Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-02T19:57:08.316Z Has data issue: false hasContentIssue false

The microstructural and optical properties of Ge/Si heterostructures grown by low-temperature molecular beam epitaxy

Published online by Cambridge University Press:  17 May 2013

Vladimir V. Roddatis
Affiliation:
CIC energiGUNE, Albert Einstein 48, Miñano 01510, Álava, Spain
Sergey N. Yakunin
Affiliation:
NRC Kurchatov Institute, pl. akademika Kurchatova, 1, 123182, Moscow, Russia
Alexander L. Vasiliev*
Affiliation:
NRC Kurchatov Institute, pl. akademika Kurchatova, 1, 123182, Moscow, Russia
Mikhail V. Kovalchuk
Affiliation:
NRC Kurchatov Institute, pl. akademika Kurchatova, 1, 123182, Moscow, Russia
Alexej Yu Seregin
Affiliation:
Shubnikov Institute of Crystallography RAS, Leninsky pr. 59, 117333, Moscow, Russia
Timur M. Burbaev
Affiliation:
Lebedev Physical Institute RAS, Leninsky pr. 53, 119991, Moscow, Russia
Michail N. Gordeev
Affiliation:
Lebedev Physical Institute RAS, Leninsky pr. 53, 119991, Moscow, Russia
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Multilayer Si/Ge heterostructures with the thickness of Ge layers varying from 2 to 12 monolayers (MLs) were formed by molecular beam epitaxy on the (001) Si substrates at 300 °C (Ge) and 450 °C (Si). Using conventional and aberration corrected scanning transmission electron microscopy, x-ray reflectometry and x-ray standing waves, a thorough study of the Si/Ge heterostructures was performed. Optical properties of the heterostructures were probed by photoluminescence spectroscopy. It is shown that the growth of Ge layers up to a thickness of 5 ML occurs through the Frank–van der Merwe mechanism. For thicker Ge layers the growth mechanism of the Si–Ge heterostructure changes to Stranski–Krastanov with Si–Ge islands having the shape of inverted pyramids. We discuss the intermixing of Si and Ge due to stress induced interdiffusion. An explanation of the influence of the observed structural peculiarities on the PL spectra of the heterostructures is given.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kasper, E. and Paul, D.J.: Silicon Quantum Integrated Circuits. Silicon-Germanium Heterostructure Devices: Basics and Realisations (Springer-Verlag, Berlin, Heidelberg, 2005).CrossRefGoogle Scholar
Balandin, A.A. and Wang, K.L.: Handbook of semiconductor nanostructures and nanodevices, in Quantum Dots, Nanowires and Self-Assemblies, Vol. 1, edited by A.A. Balandin and K.L. Wang (American Scientific Publishers, New York, 2006).Google Scholar
LeGoues, F.K., Copel, M., and Tromp, R.: Novel strain-induced defect in thin molecular-beam-epitaxy layers. Phys. Rev. Lett. 63, 1286 (1989).CrossRefGoogle ScholarPubMed
Eaglesham, D.J. and Cerullo, M.: Dislocation-free Stranski-Krastanow growth of Ge on Si(100). Phys. Rev. Lett. 64, 1943 (1990).CrossRefGoogle ScholarPubMed
Paul, D.J.: Si/SiGe heterostructures: From material and physics to devices and circuits. Semicond. Sci. Technol. 19, 75 (2004).CrossRefGoogle Scholar
Brunner, K.: Si/Ge nanostructures. Rep. Prog. Phys. 65, 27 (2002).CrossRefGoogle Scholar
Voigtländer, B.: Fundamental processes in Si/Si and Ge/Si epitaxy studied by scanning tunneling microscopy during growth. Surf. Sci. Rep. 43(5–8), 127 (2001).CrossRefGoogle Scholar
Rastelli, A., Stoffel, M., Denker, U., Merdzhanova, T., and Schmidt, O.G.: Strained SiGe islands on Si(001): Evolution, motion, dissolution, and plastic relaxation. Phys. Status Solidi A 203(14), 3506 (2006).CrossRefGoogle Scholar
Pchelyakov, O.P., Bolkhovityanov, Y.B., Dvurechenskii, A.V., Sokolov, L.V., Nikiforov, A.I., Yakimov, A.I., and Voigtländer, B.: Silicon–germanium nanostructures with quantum dots: Formation mechanisms and electrical properties. Semiconductors 34, 1281 (2000).CrossRefGoogle Scholar
Dashiell, M.W., Denker, U., and Schmidt, O.G.: Photoluminescence investigation of phononless radiative recombination and thermal-stability of germanium hut clusters on silicon(001). Appl. Phys. Lett. 79, 2261 (2001).CrossRefGoogle Scholar
Dashiell, M.W., Denker, U., Müller, C., Costantini, G., Manzano, C., Kern, K., and Schmidt, O.G.: Photoluminescence of ultrasmall Ge quantum dots grown by molecular-beam epitaxy at low temperatures. Appl. Phys. Lett. 80, 1279 (2002).CrossRefGoogle Scholar
Burbaev, T.M., Kurbatov, V.A., Rzayev, M.M., Pogosov, A.O., Sibel’din, N.N., Tsvetkov, V.A., Lichtenberger, H., Schäffler, F., Leitao, J.P., Sobolev, N.A., and Carmo, M.C.: Morphological transformation of a germanium layer grown on a silicon surface by molecular-beam epitaxy at low temperatures. Phys. Sol. State 47(1), 71 (2005).CrossRefGoogle Scholar
Leitão, J.P., Fonseca, A., Sobolev, N.A., Carmo, M.C., Franco, N., Sequeira, A.D., Burbaev, T.M., Kurbatov, V.A., Rzaev, M.M., Pogosov, A.O., Sibeldin, N.N., Tsvetkov, V.A., Lichtenberger, H., and Schäffler, F.: Low-temperature molecular beam epitaxy of Ge on Si. Mater. Sci. Semicond. Process. 8(1–3), 35 (2005).CrossRefGoogle Scholar
Tomitori, M., Watanabe, K., Kobayashi, M., and Nishikawa, O.: STM study of the Ge growth mode on Si(001) substrates. Appl. Surf. Sci. 7677, 322 (1994).CrossRefGoogle Scholar
Arapkina, L.V. and Yuryev, V.A.: Classification of Ge hut clusvters in arrays formed by molecular beam epitaxy at low temperatures on the Si(001) surface. Uspekhi Fizicheskikh Nauk 53, 279 (2010).CrossRefGoogle Scholar
Cheng, H.H., Chia, C.T., Markov, V.A., Guo, X.J., Chen, C.C., Peng, Y.H., and Kuan, C.H.: A novel structure in Ge/Si epilayers grown at low temperature. Thin Solid Films 369(1–2), 182 (2000).CrossRefGoogle Scholar
Soo, Y.L., Kioseoglou, G., Huang, S., Kim, S., Kao, Y.H., Peng, Y.H., Kuan, C.H., and Cheng, H.H.: “Inverted hut” structure of Si-Ge nanocrystals studied by extended x-ray absorbtion fine structure method. Appl. Phys. Lett. 78(23), 3684 (2000).CrossRefGoogle Scholar
Lee, J.R., Lin, S.C., Lu, C.R., Lin, J.H., Chia, C.T., and Chang, H.H.: Optical characterization of Ge/Si superlattices with stacked nanoripples. J. Phys. Chem. Solids 69, 490 (2008).CrossRefGoogle Scholar
Cheng, H.H., Huang, W.P., Mashanov, V.I., and Sun, G.: Local intermixing on Ge/Si hetrostructures at low temperature growth. J. Appl. Phys. 108, 044314 (2010).CrossRefGoogle Scholar
Chang, S.J., Huang, C.F., Kallel, M.A., Wang, K.L., Bowman, R.C. Jr., and Adams, P.M.: Growth and characterization of Ge/Si strained layer superlattices. Appl. Phys. Lett. 53(19), 1835 (1988).CrossRefGoogle Scholar
Tsang, J.C., Freeouf, J.L., and Iyer, S.S.: Localized and nonlocalized states in thin Ge layers grown by molecular-beam epitaxy at low temperatures. Phys. Rev. B 46(12), 7755 (1992).CrossRefGoogle ScholarPubMed
Yeom, H.W., Sasaki, M., Suzuki, S., Sato, S., Hosoi, S., Iwabuchi, M., Higashiyama, K., Fukutani, H., Nakamura, M., Abukawa, T., and Kono, S.: Existence of a stable intermixing phase for monolayer Ge on Si(001). Surf. Sci. 381, L533 (1997).CrossRefGoogle Scholar
Zhu, X.Y. and Lee, Y.H.: Defect-induced Si/Ge intermixing on the Ge/Si(100) surface. Phys. Rev. B 59(15), 9764 (1999).CrossRefGoogle Scholar
Voigtländer, B. and Kästner, M.: Evolution of the strain relaxation in a Ge layer on Si(001) by reconstruction and intermixing. Phys. Rev. B 60(8), R5121 (1999).CrossRefGoogle Scholar
Nakajima, K., Konishi, A., and Kimura, K.: Direct observation of intermixing at Ge/Si(001) interfaces by high-resolution Rutherford backscattering spectroscopy. Phys. Rev. Lett. 83(9), 1802 (1999).CrossRefGoogle Scholar
Uberuaga, B.P., Leskovar, M., Smith, A.P., Jónsson, H., and Olmstead, M.: Diffusion of Ge below the Si(100) surface: Theory and experiment. Phys. Rev. Lett. 84(11), 2441 (2000).CrossRefGoogle Scholar
Qin, X.R., Swartzent ruber, B.S., and Lagally, M.G.: Scanning tunneling microscopy identification of atomic-scale intermixing on Si(100) at submonolayer Ge coverages. Phys. Rev. Lett. 84(20), 4645 (2000).CrossRefGoogle ScholarPubMed
Wagner, R.J. and Gulari, E.: Simulation of Ge/Si intermixing during heteroepitaxy. Phys. Rev. B 69(19), 195312 (2004).CrossRefGoogle Scholar
Pearton, S.J., Corbett, J.W., and Shi, T.S.: Hydrogen in crystalline semiconductors. Appl. Phys. A 43, 153 (1987).CrossRefGoogle Scholar
Burbaev, T.M., Zavaritskaya, T.N., Kurbatov, V.A., Melnik, N.N., Tsvetkov, V.A., Zhuravlev, K.S., Markov, V.A., and Nikiforov, A.I.: Optical properties of germanium monolayers on silicon. Semiconductors 35(8), 979 (2001).CrossRefGoogle Scholar
Schülli, T.U., Vastola, G., Richard, M-I., Malachias, A., Renaud, G., Uhlík, F., Montalenti, F., Chen, G., Miglio, L., Schäffler, F., and Bauer, G.: Enhanced relaxation and intermixing in Ge islands grown on pit-patterned Si(001) substrates. Phys. Rev. Lett. 102, 025502 (2009).CrossRefGoogle ScholarPubMed
Sturm, J.C., Manoharan, H., Lenchyshyn, L.C., Thewalt, M.L.W., Rowell, N.L., Noël, J-P., and Houghton, D.C.: Well-resolved band-edge photoluminescence of excitons confined in strained Si1-xGex quantum wells. Phys. Rev. Lett. 66, 1362 (1991).CrossRefGoogle ScholarPubMed
Stoffel, M., Denker, U., Kar, G.S., Sigg, H., and Schmidt, O.G.: Extended wavelength region of self-assembled Ge/Si(001) islands capped with Si at different temperatures. Appl. Phys. Lett. 83, 2910 (2003).CrossRefGoogle Scholar
Thonke, K., Weber, J., Wagner, J., and Sauer, R.: Origin of the 1.080 eV (I2) photolumiscence line in irradiated silicon. Physica B 116, 252 (1983).CrossRefGoogle Scholar
Van de Walle, C.G. and Martin, R.M.: Theoretical calculations of heterojunction discontinuities in the Si/Ge system. Phys. Rev. B 34, 5621 (1986).CrossRefGoogle Scholar
Csepregi, L., Kennedy, E.F., Mayer, J.W., and Sigmon, T.W.: Substrate orientation dependence of the epitaxial regrowth rate from Si implanted amorphous Si. J. Appl. Phys. 49, 3906 (1978).CrossRefGoogle Scholar
Chen, G., Lichtenberger, H., Bauer, G., Jantsch, W., and Schaffler, F.: Initial stage of the two-dimensional to three dimensional transition of a strained SiGe layer on a pit-patterned Si(001) template. Phys. Rev. B 74, 035303 (2006).Google Scholar
Grydlik, M., Brehm, M., Hacki, F., Groiss, H., Fromherz, T., Schäffler, F., and Bayer, G.: Inverted Ge islands in {111} faceted Si pits – a novel approach towards SiGe islands with higher aspect ratio. New J. Phys. 12, 063002 (2010).CrossRefGoogle Scholar
Schmidt, O.G., Denker, U., Eberl, K., Kienzle, O., and Ernst, F.: Effect of overgrowth temperature on the photoluminescence of Ge/Si islands. Appl. Phys. Lett. 77, 2509 (2000).CrossRefGoogle Scholar
Schmidt, O.G. and Eberl, K.: Multiple layers of self-asssembled Ge/Si islands: Photoluminescence, strain fields, material interdiffusion and island formation. Phys. Rev. B 61 13721 (2000).CrossRefGoogle Scholar
Zhong, Z., Stangl, J., Schäffler, F., and Bauer, G.: Evolution of shape, height, and in-plane lattice constant of Ge-rich islands during capping with Si. Appl. Phys. Lett. 83, 3695 (2003).CrossRefGoogle Scholar