Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T07:26:21.976Z Has data issue: false hasContentIssue false

Meso-Porous Alumina Capillary Tube as a Support for High-Temperature Gas Separation Membranes by Novel Pulse Sequential Anodic Oxidation Technique

Published online by Cambridge University Press:  03 March 2011

Takeshi Inada*
Affiliation:
Japan Fine Ceramics Center, Hydrogen Separation Membrane Project Division,Nagoya 456-8587, Japan
Naoki Uno
Affiliation:
Japan Fine Ceramics Center, Hydrogen Separation Membrane Project Division,Nagoya 456-8587, Japan
Takeharu Kato
Affiliation:
Japan Fine Ceramics Center, Hydrogen Separation Membrane Project Division,Nagoya 456-8587, Japan
Yuji Iwamoto
Affiliation:
Japan Fine Ceramics Center, Hydrogen Separation Membrane Project Division,Nagoya 456-8587, Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A meso-porous anodic alumina capillary tube (MAAC) having highly oriented radial meso-pore channels with a minimum diameter of 3 nm has been successfully synthesized using a novel pulse sequential anodic oxidation technique at 100 Hz of pulse frequency. A value resulting in a high channel-pore formation rate at 1 V of the pulse sequential voltage was determined to be the optimum pulse frequency for the anodization. Transmission electron microscopy observation and N2 sorption analysis revealed that controlling the minimum pore channel diameter at 3 nm was possible by the voltage of 1 V. The gas permeance according to Knudsen’s diffusion mechanism was demonstrated at 500 °C, by evaluating gas permeation properties through the meso-porous anodic alumina capillary tube with radial meso-pore channels with minimum diameter of 3 nm, achieving hydrogen permeance of 1.8 × 10−6 mol/m2 s Pa.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Gavalas, G.R., Megris, C.E. and Nam, S.W.: Deposition of H2-permselective SiO2 films. Chem. Eng. Sci. 44, 1829 (1989).Google Scholar
2Kitao, S., Kameda, H. and Asaeda, M.: Gas separation by thin porous silica membrane of ultra fine pores at high temperature. Membrane 15, 222 (1990).CrossRefGoogle Scholar
3Tsapatsis, M. and Gavalas, G.R.: Structure and aging characteristics of H2-permselective SiO2-Vycor membranes. J. Membr. Sci. 87, 281 (1994).Google Scholar
4Yan, S., Maeda, H., Kusakabe, K., Morooka, S. and Akiyama, Y.: Hydrogen-permselective SiO2 membrane formed in pores of alumina support tube by chemical vapor deposition with tetraethyl orthosilicate. Ind. Eng. Chem. Res. 33, 2096 (1994).CrossRefGoogle Scholar
5Wu, J.C.S., Sabol, H., Smith, G.W., Flowers, D.L. and Liu, P.K.T.: Characterization of hydrogen-permselective microporous ceramic membranes. J. Membr. Sci. 96, 275 (1994).Google Scholar
6Yoshida, K., Hirano, Y., Fujii, H., Tsuru, T. and Asaeda, M.: Hydrothermal stability and performance of silica-zirconia membranes for hydrogen separation in hydrothermal conditions. J. Chem. Eng. of Jpn. 34, 523 (2001).Google Scholar
7Raman, N.K. and Brinker, C.J.: Organic “template” approach to molecular sieving silica membranes. J. Membr. Sci. 105, 273 (1995).CrossRefGoogle Scholar
8Sea, B-K., Kusakabe, K. and Morooka, S.: Pore size control and gas permeation kinetics of silica membranes by pyrolysis of phenyl-substituted ethoxysilanes with cross-flow through a porous support wall. J. Membr. Sci. 130, 41 (1997).Google Scholar
9Nair, B.N., Yamaguchi, T., Okubo, T., Suematsu, H., Keizer, K. and Nakao, S.: Sol-gel synthesis of molecular sieving silica membranes. J. Membr. Sci. 135, 237 (1997).CrossRefGoogle Scholar
10de Vos, R.M. and Verweij, H.: Improved performance of silica membranes for gas separation. J. Membr. Sci. 143, 37 (1998).CrossRefGoogle Scholar
11Nijmeijer, A., Bladergroen, B.J. and Verweij, H.: Low-temperature CVI modification of γ-alumina membranes. Microporous Mesoporous Mater. 25, 179 (1998).CrossRefGoogle Scholar
12de Vos, R.M., Maier, W.F. and Verweij, H.: Hydrophobic silica membranes for gas separation. J. Membr. Sci. 158, 277 (1999).Google Scholar
13Hwang, G-J., Onuki, K., Shimizu, S. and Ohya, H.: Hydrogen separation in H2-H2O-HI gaseous mixture using the silica membrane prepared by chemical vapor deposition. J. Membr. Sci. 162, 83 (1999).Google Scholar
14Kusakabe, K., Shibao, F., Zhao, G., Sotowa, K-I., Watanabe, K. and Saito, T.: Surface modification of silica membranes in tublar-type module. J. Membr. Sci. 215, 321 (2003).CrossRefGoogle Scholar
15Kurungot, S., Yamaguchi, T. and Nakao, S.: Rh/γ-Al2O3 catalytic layer integrated with sol-gel synthesized microporous silica membrane for compact membrane reactor applications. Catal. Lett. 86, 273 (2003).Google Scholar
16Keller, F., Hunter, M.S. and Robinson, D.L.: Structural features of oxide coatings on aluminum. J. Electrochem. Soc. 100, 411 (1953).CrossRefGoogle Scholar
17O’Sullivan, J.P. and Wood, G.C.: The morphology and mechanism of formation of porous anodic films on aluminium. Proc. R. Soc. London A 317, 511 (1970).Google Scholar
18Wood, G.C. and O’Sullivan, J.P.: The anodizing of aluminium in sulphate solutions. Electrochim. Acta 15, 1865 (1970).Google Scholar
19Ebihara, K., Takahashi, H. and Nagayama, M.: Structure and density of anodic oxide films formed on aluminum in sulfuric acid solutions. J. Surf. Finish. Soc. Jpn. 42, 156 (1982).Google Scholar
20Ono, S., Takeda, K. and Masuko, N.: Cell dimension of porous anodic alumina films. ATB Metall. 40/41, 398 2000-2001.Google Scholar
21Dell’Oca, C.J. and Fleming, P.J.: Initial stage of oxide growth and pore initiation in the porous anodization of aluminum. J. Electrochem. Soc. 123, 1487 (1976).Google Scholar
22Nagayama, M. and Tamura, K.: Dissolution of the anodic oxide film on aluminium in a sulphuric acid solution. Electrochim. Acta 12, 1097 (1967).Google Scholar
23Inada, T. and Fukui, T.: Development of anodic alumina membrane with sub-nanometers pore size, in Progress in Membrane Science and Technology , edited by Kemperman, A.J.B. and Koops, G.H. (Abstracts of Euromembrane 97, Twente, The Netherlands, 1997) p. 257.Google Scholar
24Inada, T., Fukui, T. and Yanagida, H.: Development of anodic alumina membrane with sub-nanometers pore size by using pulse voltage, in Inorganic Membranes, edited by Nakao, S. (Proceedings of the 5th International Conference on Inorganic Membranes, Nagoya, Japan, 1998) p. 148.Google Scholar
25Itaya, K., Sugawara, S., Arai, K. and Saito, S.: Properties of porous anodic aluminum oxide films as membranes. J. Chem. Eng. Jpn. 17, 514 (1984).CrossRefGoogle Scholar
26Diggle, J.W., Downie, T.C. and Goulding, C.W.: Anodic oxide films on aluminum. Chem. Rev. 69, 365 (1969).CrossRefGoogle Scholar
27Barrer, R.M.: Permeation, diffusion and solution of gases in organic polymers. Trans. Farada Soc. 35, 628 (1934).Google Scholar
28Guo, X.P., Imaizumi, H. and Katoh, K.: The behaviour of passive films on carbon steel in sulfuric acid solutions. J. Electroanal. Chem. 383, 99 (1994).Google Scholar
29de Wit, H.J., Wijenberg, C. and Crevecoeur, C.: Impedance measurements during anodization of aluminum. J. Electrochem. Soc. 126, 779 (1979).Google Scholar
30Takahashi, H., Nagayama, M., Akahori, H. and Kitahara, A.: Electron-microscopy of porous anodic oxide films on aluminium by ultra-thin sectioning technique Part 1. The structural change of the film during the current recovery period. J. Electronmicroscopy 22, 149 (1973).Google Scholar
31Knudsen, M.: The law of the molecular flow and viscosity of gases moving through tubes. Ann. Phys. 28, 75 (1909).Google Scholar
32Tamon, H., Kyotani, S., Wada, H., Okazaki, M. and Toei, R.: Surface flow phenomenon of adsorbed gases on activated alumina. J. Chem. Eng. Jpn. 14, 136 (1981).CrossRefGoogle Scholar
33Okubo, T., Watanabe, M., Kusakabe, K. and Morooka, S.: Preparation of γ-alumina thin membrane by sol-gel processing and its characterization by gas permeation. J. Membr. Sci. 25, 4822 (1990).Google Scholar