Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T14:57:24.315Z Has data issue: false hasContentIssue false

Mechanical alloying and electrochemical hydrogen storage of Mg-based systems

Published online by Cambridge University Press:  31 January 2011

W.P. Kalisvaart*
Affiliation:
Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
P.H.L. Notten
Affiliation:
Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; and Philips Research Laboratories, 5656 AE Eindhoven, The Netherlands
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Results on mechanical alloying of binary and ternary Mg–Ti-based mixtures are reported. Using fine-powdered reactants and a process-control-agent, a mixture of two face-centered cubic compounds is obtained. Using a coarse Mg precursor without addition of a milling agent results in a hexagonal-solid solution of Ti in Mg due to a lower oxygen content in the Mg starting material. Upon introduction of Ni or Al as a third element, the amount of dissolved Ti decreases to form a nanocrystalline secondary phase. The electrochemical charging capacity of the hexagonal compounds is far superior to that of the cubic ones, whereas the discharge capacity is significantly increased only upon addition of Ni. The secondary TiNi phase acts as a rapid diffusion path for hydrogen, greatly improving the rate capability of the alloys. The reversible hydrogen storage capacity reaches values of up to 3.2 wt% at room temperature for (Mg0.75Ti0.25)0.90Ni0.10.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Schlapbach, L.Züttel, A.: Hydrogen-storage materials for mobile applications. Nature 414, 353 2001CrossRefGoogle ScholarPubMed
2Tarascon, J.M.Armand, M.: Issues and challenges facing rechargeable lithium batteries. Nature 414, 359 2001Google Scholar
3Notten, P.H.L.: Interstitial Intermetallic Alloys. NATO ASI Series E,Vol. 281, Chap. 7, 151 1995Google Scholar
4Senoh, H., Morimoto, K., Inoue, H., Iwakura, C.Notten, P.H.L.: Relationship between equilibrium hydrogen pressure and exchange current for the hydrogen electrode reaction at MmNi3.9−xMn0.4AlxCo0.7 alloy electrodes. J. Electrochem. Soc. 147, 2451 2000CrossRefGoogle Scholar
5Willems, J.J.G.: Metal hydride electrodes stability of LaNi5-related components. Philips J. Res. (Suppl.) 39, 1 1984Google Scholar
6Zaluska, A., Zaluski, L.Olsen, J.O. Ström: Nanocrystalline magnesium for hydrogen storage. J. Alloys Compd. 288, 217 1999CrossRefGoogle Scholar
7Niessen, R.A.H.Notten, P.H.L.: Electrochemical hydrogen storage characteristics of thin film MgX (X = Sc, Ti, V, Cr) compounds. Electrochem. Solid-State Lett. 8, A534 2005Google Scholar
8Vermeulen, P., Niessen, R.A.H.Notten, P.H.L.: Hydrogen storage in metastable MgyTi(1−y ) thin films. Electrochem. Commun. 8, 27 2005Google Scholar
9Notten, P.H.L., Ouwerkerk, M., van Hal, H., Beelen, D., Keur, W., Zhou, J.Feil, H.: High energy density strategies: From hydride-forming materials research to battery integration. J. Power Sources 129, 45 2004CrossRefGoogle Scholar
10Kalisvaart, W.P., Niessen, R.A.H.Notten, P.H.L.: Electrochemical hydrogen storage in MgSc alloys: A comparative study between thin films and bulk materials. J. Alloys Compd. 417, 280 2006CrossRefGoogle Scholar
11Latroche, M., Kalisvaart, W.P.Notten, P.H.L.: Crystal structure of Mg0.65Sc0.35Dx deuterides studied by x-ray and neutron powder diffraction. J. Solid State Chem. 179, 3024 2006Google Scholar
12Kalisvaart, W.P., Latroche, M., Cuevas, F.Notten, P.H.L.: In-situ neutron diffraction study on Pd-doped Mg0.65Sc0.35 electrode material. J. Solid State Chem. 181, 1141 2008CrossRefGoogle Scholar
13Conradi, M.S., Mendenhall, M.P., Ivancic, T.M., Carl, E.A., Browning, C.D., Notten, P.H.L., Kalisvaart, W.P., Magusin, P.C.M.M., Bowman, R.C. Jr., Hwan, S-J.Adolphi, N.L.: NMR to determine rates of motion and structures in metal-hydrides. J. Alloys Compd. 446–447, 499 2007Google Scholar
14Suryanarayana, C.: Mechanical alloying and milling. Prog. Mater. Sci. 46, 1 2001Google Scholar
15Ma, E.: Alloys created between immiscible elements. Prog. Mater. Sci. 50, 413 2005CrossRefGoogle Scholar
16Liang, G.Schulz, R.: Synthesis of Mg–Ti alloy by mechanical alloying. J. Mater. Sci. 38, 1179 2003CrossRefGoogle Scholar
17Kalisvaart, W.P., Wondergem, H.J., Bakker, F.Notten, P.H.L.: Mg–Ti based materials for electrochemical hydrogen storage. J. Mater. Res. 22, 1640 2007CrossRefGoogle Scholar
18Niessen, R.A.H.Notten, P.H.L.: Reference electrode induced surface poisoning of thin film electrodes. J. Electrochem. Soc. 152, A2051 2005Google Scholar
19Sun, F.Froes, F.H.: Synthesis and characterization of mechanical-alloyed Ti–xMg alloys. J. Alloys Compd. 340, 220 2002Google Scholar
20Wilkes, D.M.J., Goodwin, P.S., Ward-Close, C.M., Bagnall, K.Steeds, J.: Solid solution of Mg in Ti by mechanical alloying. Mater. Lett. 27, 47 1996Google Scholar
21Ruggeri, S.Roué, L.: Correlation between charge input and cycle life of MgNi electrode for Ni–MH batteries. J. Power Sources 117, 260 2003CrossRefGoogle Scholar
22Cui, N., He, P.Luo, J.L.: Synthesis and characterization of nanocrystalline magnesium-based hydrogen storage alloy electrode materials. Electrochim. Acta 44, 3549 1999CrossRefGoogle Scholar
23Vermeulen, P., Thiel, E.F.M.J.V.Notten, P.H.L.: Ternary MgTiX-alloys: A promising route towards low-temperature, high-capacity, hydrogen-storage materials. Chem. Eur. J. 13, 9892 2007Google Scholar
24Skriver, H.L.: Crystal structure from one-electron theory. Phys. Rev. B 31, 1909 1985Google Scholar
25Manna, I., Chattopadhyay, P.P., Nandi, P., Banhart, F.Fecht, H-J.: Formation of face-centered-cubic titanium by mechanical attrition. J. Appl. Phys. 93, 1520 2003Google Scholar
26Manna, I., Chattopadhyay, P.P., Banhart, F.Fecht, H-J.: Formation of face-centered-cubic zirconium by mechanical attrition. Appl. Phys. Lett. 81, 4136 2002Google Scholar
27Bera, S.Manna, I.: Hexagonal close packed to face centered cubic polymorphic transformation in nanocrystalline titanium–– zirconium system by mechanical alloying. J. Alloys Compd. 417, 104 2006CrossRefGoogle Scholar
28Suryanarayana, C.Froes, F.H.: Nanocrystalline titanium-magnesium alloys by mechanical alloying. J. Mater. Res. 5, 1880 1990CrossRefGoogle Scholar
29Gaffet, E., Harmelin, M.Faudot, F.: Far-from-equilibrium phase transition induced by mechanical alloying in the Cu–Fe system. J. Alloys Compd. 194, 23 1993Google Scholar
30Murty, B.S., Ranganathan, S.Rao, M. Mohan: Solid state amorphization in binary Ti–Ni, Ti–Cu and ternary Ti–Ni–Cu system by mechanical alloying. Mater. Sci. Eng., A 149, 231 1992Google Scholar
31Murty, B.S., Mohan, M.Ranganathan, R.S.: Nanocrystalline phase formation and extension of solid solubility by mechanical alloying in Ti-based systems. Nanostruct. Mater. 3, 459 1993Google Scholar
32Borsa, D.M., Gremaud, R., Baldi, A., Schreuders, H., Rector, J.H., Kooij, B., Vermeulen, P., Notten, P.H.L., Dam, B.Griessen, R.: Structural, optical and electrical properties of MgyTi1−y thin films. Phys. Rev. B 75, 205408 2007CrossRefGoogle Scholar
33Vermeulen, P., Wondergem, H.J., Graat, P.C.J., Borsa, D.M., Schreuders, H., Dam, B., Griessen, R.Notten, P.H.L.: In-situ XRD of (de)hydrogenation of Mg–Ti thin film alloys. J. Mater. Chem. in pressGoogle Scholar
34Vigeholm, B., Jensen, K., Larsen, B.Schrøder-Pedersen, A.: Elements of hydride formation mechanisms in nearly spherical magnesium powder particles. J. Less Comm. Met. 131, 133 1987Google Scholar
35Jankowska, E., Makowiecka, M.Jurczyk, M.: Electrochemical performance of sealed Ni–MH batteries using nanocrystalline TiNi-type hydride electrodes. Renew. Energy 33, 211 2008Google Scholar
36Drenchev, B.Spassov, T.: Electrochemical hydriding of amorphous and nanocrystalline TiNi-based alloys. J. Alloys Compd. 441, 197 2007CrossRefGoogle Scholar