Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-27T12:37:35.027Z Has data issue: false hasContentIssue false

Kinetic control of CeO2 nanoparticles for catalytic CO oxidation

Published online by Cambridge University Press:  11 February 2019

Bingqi Han
Affiliation:
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
Huixia Li
Affiliation:
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
Liping Li
Affiliation:
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
Yan Wang
Affiliation:
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
Yuelan Zhang
Affiliation:
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
Guangshe Li*
Affiliation:
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

This article reports on the growth kinetics of cerium oxide (CeO2) nanoparticles prepared via a sintering method. By varying the sintering temperatures and periods of time, particle size of CeO2 nanoparticles was tuned from 11 to 100 nm. Ostwald ripening mechanism prevails in the growth process, and the growth kinetics is determined to follow an equation, D5 = 16.25 + 3.6 × 1020 exp(−344.20/RT) in the temperature range of 700 to 1000°C. After dispersing Pt on CeO2 nanoparticles, the size effect for the catalytic performance of the CO oxidation reaction was researched. When temperature and period of time are set at 700 °C and 2 h, respectively, dispersion of Pt onto CeO2 nanoparticles led to the largest quantity of chemisorbed oxygen species on the surface and the best catalytic performance. The findings reported here would provide a feasible path for the preparation of advanced catalysts in the future and moreover to discover novel size-dependent supports for many catalytic applications.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper has been selected as an Invited Feature Paper.

References

Sun, J. and Bao, X.: Textural manipulation of mesoporous materials for hosting of metallic nanocatalysts. Chem. – Eur J. 14, 7478 (2008).CrossRefGoogle ScholarPubMed
Ta, N., Liu, J., Chenna, S., Crozier, P.A., Li, Y., Chen, A., and Shen, W.: Stabilized gold nanoparticles on ceria nanorods by strong interfacial anchoring. J. Am. Chem. Soc. 134, 20585 (2012).CrossRefGoogle ScholarPubMed
Carrasquillo-Flores, R., Ro, I., Kumbhalkar, M.D., Burt, S., Carrero, C.A., Alba-Rubio, A.C., Miller, J.T., Hermans, I., Huber, G.W., and Dumesic, J.A.: Reverse water–gas shift on interfacial sites formed by deposition of oxidized molybdenum moieties onto gold nanoparticles. J. Am. Chem. Soc. 137, 10317 (2015).CrossRefGoogle ScholarPubMed
Shekhar, M., Wang, J., Lee, W.S., Williams, W.D., Kim, S.M., Stach, E.A., Miller, J.T., Delgass, W.N., and Ribeiro, F.H.: Size and support effects for the water-gas shift catalysis over gold nanoparticles supported on model Al2O3 and TiO2. J. Am. Chem. Soc. 134, 4700 (2012).CrossRefGoogle ScholarPubMed
Asakura, H., Hosokawa, S., Ina, T., Kato, K., Nitta, K., Uera, K., Uruga, T., Miura, H., Shishido, T., Ohyama, J., Satsuma, A., Sato, K., Yamamoto, A., Hinokuma, S., Yoshida, H., Machida, M., Yamazoe, S., Tsukuda, T., Teramura, K., and Tanaka, T.: Dynamic behavior of Rh species in Rh/Al2O3 model catalyst during three-way catalytic reaction: An operando X-ray absorption spectroscopy study. J. Am. Chem. Soc. 140, 176 (2017).CrossRefGoogle ScholarPubMed
Gänzler, A.M., Casapu, M., Vernoux, P., Loridant, S., Cadete Santos Aires, F.J., Epicier, T., Betz, B., Hoyer, R., and Grunwaldt, J.D.: Tuning the structure of platinum particles on ceria in situ for enhancing the catalytic performance of exhaust gas catalysts. Angew. Chem., Int. Ed. 56, 13078 (2017).CrossRefGoogle ScholarPubMed
Moreno, O.P., Pérez, R.G., Merino, R.P., Portillo, M.C., Tellez, G.H., Rosas, E.R., and Tototzintle, M.Z.: CeO2 nanoparticles growth by chemical bath and its thermal annealing treatment in air atmosphere. Optik 148, 142 (2017).CrossRefGoogle Scholar
Lakhwani, S. and Rahaman, M.N.: Hydrothermal coarsening of CeO2 particles. J. Mater. Res. 14, 1455 (1999).CrossRefGoogle Scholar
Nie, L., Mei, D., Xiong, H., Peng, B., Ren, Z., Hernandez, X.I.P., DeLaRiva, A., Wang, M., Engelhard, M.H., Kovarik, L., Datye, A.K., and Wang, Y.: Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 358, 1419 (2017).CrossRefGoogle ScholarPubMed
Yang, C., Yu, X., Pleßow, P.N., Heißler, S., Weidler, P.G., Nefedov, A., Studt, F., Wang, Y., and Wöll, C.: Rendering photoreactivity to ceria: The role of defects. Angew. Chem. Int. Ed. 56, 14301 (2017).CrossRefGoogle ScholarPubMed
Kattel, S., Liu, P., and Chen, J.G.: Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface. J. Am. Chem. Soc. 139, 9739 (2017).CrossRefGoogle ScholarPubMed
Abdel-Mageed, A.M., Kucerova, G., Bansmann, J., and Behm, R.J.: Active Au species during the low-temperature water gas shift reaction on Au/CeO2: A time-resolved operando XAS and DRIFTS study. ACS Catal. 7, 6471 (2017).CrossRefGoogle Scholar
Stere, C.E., Anderson, J.A., Chansai, S., Delgado, J.J., Goguet, A., Graham, W.G., Hardacre, C., Taylor, S.F.R., Tu, X., Wang, Z., and Yang, H.: Non-thermal plasma activation of gold-based catalysts for low-temperature water–gas shift catalysis. Angew. Chem. Int. Ed. 56, 5579 (2017).CrossRefGoogle ScholarPubMed
Wang, R., Dangerfield, R., and Li, D.: Low-temperature CO conversion on 1 wt% Pt/CeO2 nanocubes. Microsc. Microanal. 19, 1700 (2013).CrossRefGoogle Scholar
Jeong, H., Bae, J., Han, J.W., and Lee, H.: Promoting effects of hydrothermal treatment on the activity and durability of Pd/CeO2 catalysts for CO oxidation. ACS Catal. 7, 7097 (2017).CrossRefGoogle Scholar
He, H., Yang, P., Li, J., Shi, R., Chen, L., Zhang, A., and Zhu, Y.: Controllable synthesis, characterization, and CO oxidation activity of CeO2 nanostructures with various morphologies. Ceram. Int. 42, 7810 (2016).CrossRefGoogle Scholar
Gao, D., Zhang, Y., Zhou, Z., Cai, F., Zhao, X., Huang, W., Li, Y., Zhu, J., Liu, P., Yang, F., Wang, G., and Bao, X.: Enhancing CO2 electroreduction with the metal–oxide interface. J. Am. Chem. Soc. 139, 5652 (2017).CrossRefGoogle ScholarPubMed
Podor, R., Clavier, N., Ravaux, J., Claparede, L., and Dacheux, N.: In situ HT-ESEM observation of CeO2 grain growth during sintering. J. Am. Ceram. Soc. 95, 3683 (2012).CrossRefGoogle Scholar
Ko, H.H., Yang, G., Wang, M.C., and Zhao, X.: Thermal behavior and crystallization kinetics of cerium dioxide precursor powders. Ceram. Int. 40, 13953 (2014).CrossRefGoogle Scholar
Zhang, Y., Li, L., Zheng, J., Li, Q., Zuo, Y., Yang, E., and Li, G.: Two-step grain-growth kinetics of sub-7 nm SnO2 nanocrystal under hydrothermal condition. J. Phys. Chem. C 119, 19505 (2015).CrossRefGoogle Scholar
Li, H., Li, L., Chen, S., Zhang, Y., and Li, G.: Kinetic control of hexagonal Mg(OH)2 nanoflakes for catalytic application of preferential CO oxidation. Chin. J. Chem. 35, 903 (2017).CrossRefGoogle Scholar
Wang, Y., Li, L., Zhang, Y., Chen, X., Fang, S., and Li, G.: Growth kinetics, cation occupancy, and magnetic properties of multimetal oxide nanoparticles: A case study on spinel NiFe2O4. J. Phys. Chem. C 121, 19467 (2017).CrossRefGoogle Scholar
Yang, E., Li, G., Zheng, J., Fu, C., Zheng, Y., and Li, L.: Kinetic control over YVO4: Eu3+ nanoparticles for tailored structure and luminescence properties. J. Phys. Chem. C 118, 3820 (2014).CrossRefGoogle Scholar
Chen, S., Li, L., Hu, W., Huang, X., Li, Q., Xu, Y., Zuo, Y., and Li, G.: Anchoring high-concentration oxygen vacancies at interfaces of CeO2–x/Cu toward enhanced activity for preferential CO oxidation. ACS Appl. Mater. Interfaces 7, 22999 (2015).CrossRefGoogle ScholarPubMed
Supplementary material: File

Han et al. supplementary material

Tables S1-S3 and Figures S1-S3

Download Han et al.  supplementary material(File)
File 750.6 KB