Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T01:32:55.926Z Has data issue: false hasContentIssue false

Iron-silica and nickel-silica nanocomposites prepared by high energy ball milling

Published online by Cambridge University Press:  31 January 2011

Anna Corrias
Affiliation:
Dipartimento di Scienze Chimiche, Università di Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
Guido Ennas
Affiliation:
Dipartimento di Scienze Chimiche, Università di Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
Anna Musinu
Affiliation:
Dipartimento di Scienze Chimiche, Università di Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
Giorgio Paschina
Affiliation:
Dipartimento di Scienze Chimiche, Università di Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
Daniela Zedda
Affiliation:
Dipartimento di Scienze Chimiche, Università di Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
Get access

Abstract

Metal-silica nanocomposites with different metal volume fractions have been prepared via solid state exchange reactions induced by ball milling followed by a reduction treatment in H2 flux. In nickel-containing mixtures oxygen transfers directly from NiO to Si while NiO is reduced to Ni. When NiO is present in a large ratio, its excess can be reduced by a thermal treatment in H2 flux. Nickel crystallites are obtained with nanometer size in the milling process and there is no significant growth during thermal treatment. Similar process conditions applied to Fe-containing mixtures give rise to a more complex reaction path which prevents the complete conversion of Fe(III) to Fe. Nickel-silica and iron-silica nanocomposites are also produced by ball milling mixtures of either nickel or iron with amorphous silica.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Koch, C. C., in Materials Science and Technology: A Comprehensive Treatment, edited by Cahn, R. W., Haasen, P., and Kramer, E. J. (VCH Verlagsgeselleschaft, Weinhein, 1991), Vol. 5, Chap. 5.Google Scholar
2.Froes, F. H. and deBarbadillo, J. J., Structural Applications of Mechanical Alloying (ASM INTERNATIONAL, Materials Park, OH, 1993).Google Scholar
3.Schaffer, G. B. and McCormick, P. G., Metall. Trans. A21, 2789 (1990).CrossRefGoogle Scholar
4.Matteazzi, P. and Caër, G. L. Le, Hyperf. Inter. 68, 177 (1991).CrossRefGoogle Scholar
5.Basset, D., Matteazzi, P., and Miani, F., Mater. Sci. Eng. A168, 149 (1993).CrossRefGoogle Scholar
6.Pardavi-Horvath, M. and Tackás, L., J. Appl. Phys. 73, 6958 (1993).CrossRefGoogle Scholar
7.Tackás, L., Nanostr. Mater. 2, 241 (1993).CrossRefGoogle Scholar
8.Tackás, L. and Pardavi-Horvath, M., J. Appl. Phys. 75, 5864 (1994).CrossRefGoogle Scholar
9.Ambrose, T., Gavrin, A., and Chien, C. L., J. Magn. Magn. Mater. 116, L311 (1992).CrossRefGoogle Scholar
10.Linderoth, S. and Pedersen, M. S., Appl. Phys. 75, 5867 (1994).CrossRefGoogle Scholar
11.de Julian, C., Giri, A. K., Morales, M. P., and Gonzáles, J. M., Scripta Metall. Mater. 33, 1079 (1995).CrossRefGoogle Scholar
12.Chien, C. L., J. Appl. Phys. 69, 5267 (1991).CrossRefGoogle Scholar
13.Roy, R., in Nanophase and Nanocomposite Materials, edited by Komarneni, S., Parker, J. C., and Thomas, G. J. (Mater. Res. Soc. Symp. Proc. 286, Pittsburgh, PA, 1993), p. 241.Google Scholar
14.Coenen, J. W. E., Appl. Catal. 56, 65 (1989).CrossRefGoogle Scholar
15.Roy, S., Das, D., Chakravorty, D., and Agrawal, D. C., J. Appl. Phys. 74, 4746 (1993).CrossRefGoogle Scholar
16.Roy, S. and Chakravorty, D., J. Mater. Res. 9, 2314 (1993).CrossRefGoogle Scholar
17.Wang, J. P. and Luo, H. L., J. Appl. Phys. 75, 7425 (1994).CrossRefGoogle Scholar
18.Shull, R. D., Ritter, J. J., Shapiro, A. J., Swartzendruber, L. J., and Bennett, L. J., in Multicomponent Ultrafine Microstructures, edited by McCandlish, L. E., Polk, D. E., Siegel, R. W., and Kear, B. H. (Mater. Res. Soc. Symp. Proc. 132, Pittsburgh, PA, 1989), p. 179.Google Scholar
19.Claussen, N., Garcia, D. E., and Janssen, R., J. Mater. Res. 11, 1884 (1996).CrossRefGoogle Scholar
20.Unruh, K. M., Patterson, B. M., Beamish, J. R., Mulders, N., and Shah, S. I., J. Appl. Phys. 68, 3015 (1990).CrossRefGoogle Scholar
21.Warren, B. E., X-Ray Diffraction (Addison-Wesley, Reading, MA, 1969), p. 264.Google Scholar
22.Concas, G., Congiu, F., Corrias, A., Muntoni, C., Paschina, G., and Zedda, D., Z. Naturforsch. 51a, 915 (1996).CrossRefGoogle Scholar
23.Corrias, A., Paschina, G., Sirigu, P., and Zedda, D., Mater. Sci. Forum 235–238, 199 (1997).Google Scholar