Published online by Cambridge University Press: 25 July 2017
Nb-based silicides are promising ultrahigh-temperature materials. However, the structural stability and mechanical properties of Nb-based silicides are markedly influenced by Nb3Si phase. Therefore, the improvement of the stability and mechanical properties of Nb3Si is a great challenge. To solve these key problems, in this work, we apply the first-principles calculations to investigate the influence of transition metals (TM = Mo, Re, Ta, W, Pt, and Ir) on the structural stability, mechanical, and thermodynamic properties of Nb3Si. Two possible doped sites: Nb site and Si site are considered. We find that these alloying elements not only can stabilize the Nb3Si phase but also effectively improve the mechanical properties of Nb3Si. The calculated electronic structure shows that high elastic modulus is attributed to the formation of the TM–Si bond. Importantly, these alloying elements improve the heat capacity of Nb3Si due to the vibration of TM atoms under high temperature. Therefore, our calculated results predict that alloying elements of Re and Ir are beneficial for improving the overall performances of Nb3Si.
Contributing Editor: Susan B. Sinnott
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.