Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T14:50:22.698Z Has data issue: false hasContentIssue false

Identifying the stress–strain curve of materials by microimpact testing. Application on pure copper, pure iron, and aluminum alloy 6061-T651

Published online by Cambridge University Press:  15 July 2015

Halim Al Baida
Affiliation:
Université Bourgogne Franche-Comté, UTBM, IRTES-LERMPS EA 7274, 90010 Belfort, France
Cécile Langlade*
Affiliation:
Université Bourgogne Franche-Comté, UTBM, IRTES-LERMPS EA 7274, 90010 Belfort, France
Guillaume Kermouche
Affiliation:
Ecole des Mines de Saint-Etienne, Centre SMS, LGF UMR 5307 CNRS, 42023 Saint-Étienne, France
Ricardo Rafael Ambriz
Affiliation:
Instituto Politécnico Nacional CIITEC-IPN, Cerrada de Cecati S/N, Col. Sta. Catarina, C.P. 02250 Azcapotzalco, DF, Mexico
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The mechanical response of materials under repeated impact loading is of primary importance to model different types of surface mechanical treatments, such as shot peening. A reverse identification method of stress–strain curves using repeated impact has been developed by Kermouche et al. [Kermouche et al., Mater. Sci. Eng., A569, 71–77 (2013)] and later improved by Al Baida et al. [Al Baida et al., Mech. Mater.86, 11–20 (2015)]. This study deals with the experimental validation of this method on three materials: a home-made pure iron, a commercially pure copper, and an industrial aluminum alloy. An approximate method derived from cone indentation theory to check the reverse method reliability. Balls of different sizes have been used to cover a wide enough range of strain. The results are also compared with macroscopic compression and traction tests. The effect of the strain rate on the stress–strain curve is discussed. The conclusion section highlights the rapidity and the ease of use of the reverse identification method.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramov, V.O., Abramov, O.V., Sommer, F., Gradov, O.M., and Smirnov, O.M.: Surface hardening of metals by ultrasonically accelerated small metal balls. Ultrasonics 36, 10131019 (1998).CrossRefGoogle Scholar
Miao, H.Y., Demers, D., Larose, S., Perron, C., and Lévesque, M.: Experimental study of shot peening and stress peen forming. J. Mater. Process. Technol. 210, 20892102 (2010).CrossRefGoogle Scholar
Murugaratnam, K., Utili, S., and Petrinic, N.: A combined DEM–FEM numerical method for shot peening parameter optimization. Adv. Eng. Softw. 79, 1326 (2015).CrossRefGoogle Scholar
Mylonas, G.I. and Labeas, G.: Numerical modelling of shot peening process and corresponding products: Residual stress, surface roughness and cold work prediction. Surf. Coat. Technol. 205, 44804494 (2011).CrossRefGoogle Scholar
Jaspers, S.P.F.C. and Dautzenberg, J.H.: Material behaviour in conditions similar to metal cutting: Flow stress in the primary shear zone. J. Mater. Process. Technol. 122, 322330 (2002).CrossRefGoogle Scholar
Beghini, M., Bertini, L., and Fontanari, V.: Evaluation of the stress–strain curve of metallic materials by spherical indentation. Int. J. Solids Struct. 43, 24412459 (2006).CrossRefGoogle Scholar
Collin, J-M., Mauvoisin, G., Bartier, O., El Abdi, R., and Pilvin, P.: Experimental evaluation of the stress–strain curve by continuous indentation using different indenter shapes. Mater. Sci. Eng., A 501, 140145 (2009).CrossRefGoogle Scholar
Collin, J-M., Mauvoisin, G., Pilvin, P., and El Abdi, R.: Use of spherical indentation data changes to materials characterization based on a new multiple cyclic loading protocol. Mater. Sci. Eng., A 488, 608622 (2008).CrossRefGoogle Scholar
Kermouche, G., Grange, F., and Langlade, C.: Local identification of the stress–strain curves of metals at a high strain rate using repeated micro-impact testing. Mater. Sci. Eng., A 569, 7177 (2013).CrossRefGoogle Scholar
Lamri, S., Langlade, C., and Kermouche, G.: Damage phenomena of thin hard coatings submitted to repeated impacts: Influence of the substrate and film properties. Mater. Sci. Eng., A 560, 296305 (2013).CrossRefGoogle Scholar
Dao, M., Chollacoop, K., Van Vliet, K.J., Venkatesh, T.A., and Suresh, S.: Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 49, 38993918 (2001).CrossRefGoogle Scholar
Huang, Y., Liu, X., Zhou, Y., Ma, Z., and Lu, C.: Mathematical analysis on the uniqueness of reverse algorithm for measuring elastic-plastic properties by sharp indentation. J. Mater. Sci. Technol. 27, 577584 (2011).CrossRefGoogle Scholar
Al Baida, H., Kermouche, G., and Langlade, C.: Development of an improved method for identifying material stress–strain curve using repeated micro-impact testing. Mech. Mater. 86, 1120 (2015).CrossRefGoogle Scholar
D. Systems: Abaqus Explicit (2011).Google Scholar
Johnson, K.L.: Contact Mechanics (Cambridge University Press, Cambridge, UK, 1985).CrossRefGoogle Scholar
Hill, R., Storakers, B., and Zdunek, A.B.: A theoretical study of the Brinell hardness test. Proc. R. Soc. London, Ser. A 423, 301330 (1989).Google Scholar
Tabor, D.: The Hardness of Metals (Oxford University Press, Oxford, UK, 2000).CrossRefGoogle Scholar
Kermouche, G., Loubet, J-L., and Bergheau, J-M.: An approximate solution to the problem of cone or wedge indentation of elastoplastic solids. C. R. Méc. 333, 389395 (2005).CrossRefGoogle Scholar
Mok, C-H.: The dependence of yield stress on strain rate as determined from ball-indentation tests. Exp. Mech. 6, 8792 (1966).CrossRefGoogle Scholar
Johnson, G.R. and Cook, W.H.: Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 21, 3148 (1985).CrossRefGoogle Scholar
Meyers, M.A.: Dynamic Behavior of Materials (John Wiley & Sons, Hoboken, NJ, 1994).CrossRefGoogle Scholar
Peng, C., Zhong, Y., Lu, Y., Narayanan, S., Zhu, T., and Lou, J.: Strain rate dependent mechanical properties in single crystal nickel nanowires. Appl. Phys. Lett. 102, 083102 (2013).CrossRefGoogle Scholar
Lacaille, V., Kermouche, G., Spinel, D-Y.T., Feulvarch, E., Morel, C., and Bergheau, J-M.: Modeling nitriding enhancement resulting from the NanoPeening treatment of a pure iron. IOP Conf. Ser. Mater. Sci. Eng. 63, 012124 (2014).CrossRefGoogle Scholar
Ostwaldt, D., Klepaczko, J.R., and Klimanek, P.: Compression tests of polycrystalline α-iron up to high strains over a large range of strain rates. J. Phys. IV 07, 385390 (1997).Google Scholar
Al Baida, H., Langlade, C., Kermouche, G., and Ambriz, R.: Identification du comportement mécanique des matériaux à l’aide d’essais de micro-impact répétés. Matér. Tech. 102, 604 (2014).CrossRefGoogle Scholar
Ambriz, R.R., Froustey, C., and Mesmacque, G.: Determination of the tensile behavior at middle strain rate of AA6061-T6 aluminum alloy welds. Int. J. Impact Eng. 60, 107119 (2013).CrossRefGoogle Scholar