Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T12:00:22.507Z Has data issue: false hasContentIssue false

Hybrid perovskite solar cells: In situ investigation of solution-processed PbI2 reveals metastable precursors and a pathway to producing porous thin films

Published online by Cambridge University Press:  17 April 2017

Dounya Barrit
Affiliation:
KAUST Solar Center (KSC), and, Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
Arif D. Sheikh
Affiliation:
KAUST Solar Center (KSC), and, Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
Rahim Munir
Affiliation:
KAUST Solar Center (KSC), and, Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
Jérémy M. Barbé
Affiliation:
KAUST Solar Center (KSC), and, Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
Ruipeng Li
Affiliation:
Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853, USA
Detlef-M. Smilgies
Affiliation:
Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853, USA
Aram Amassian*
Affiliation:
KAUST Solar Center (KSC), and, Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The successful and widely used two-step process of producing the hybrid organic-inorganic perovskite CH3NH3PbI3, consists of converting a solution deposited PbI2 film by reacting it with CH3NH3I. Here, we investigate the solidification of PbI2 films from a DMF solution by performing in situ grazing incidence wide angle X-ray scattering (GIWAXS) measurements. The measurements reveal an elaborate sol–gel process involving three PbI2⋅DMF solvate complexes—including disordered and ordered ones—prior to PbI2 formation. The ordered solvates appear to be metastable as they transform into the PbI2 phase in air within minutes without annealing. Morphological analysis of air-dried and annealed films reveals that the air-dried PbI2 is substantially more porous when the coating process produces one of the intermediate solvates, making this more suitable for subsequent conversion into the perovskite phase. The observation of metastable solvates on the pathway to PbI2 formation open up new opportunities for influencing the two-step conversion of metal halides into efficient light harvesting or emitting perovskite semiconductors.

Type
Invited Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

b)

School of Nanoscience and Technology (SNST), Shivaji University, Kolhapur, 416 004, India

Contributing Editor: Moritz Riede

References

REFERENCES

Zhou, H., Chen, Q., Li, G., Luo, S., Song, T., Duan, H-S., Hong, Z., You, J., Liu, Y., and Yang, Y.: Interface engineering of highly efficient perovskite solar cells. Science 345(6196), 542 (2014).Google Scholar
Lee, M.M., Teuscher, J., Miyasaka, T., Murakami, T.N., and Snaith, H.J.: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107), 643 (2012).Google Scholar
Burschka, J., Pellet, N., Moon, S-J., Humphry-Baker, R., Gao, P., Nazeeruddin, M.K., and Grätzel, M.: Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458), 316 (2013).Google Scholar
Schlipf, J., Docampo, P., Schaffer, C.J., Körstgens, V., Bießmann, L., Hanusch, F., Giesbrecht, N., Bernstorff, S., Bein, T., and Müller-Buschbaum, P.: A closer look into two-step perovskite conversion with X-ray scattering. J. Phys. Chem. Lett. 6(7), 1265 (2015).CrossRefGoogle ScholarPubMed
Hao, F., Stoumpos, C.C., Chang, R.P.H., and Kanatzidis, M.G.: Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J. Am. Chem. Soc. 136(22), 8094 (2014).Google Scholar
Choi, Y.C., Won Lee, S., Jeong Jo, H., Kim, D-H., and Sung, S-J.: Controlled growth of organic–inorganic hybrid CH3NH3PbI3 perovskite thin films from phase-controlled crystalline powders. RSC Adv. 6(106), 104359 (2016).CrossRefGoogle Scholar
Guo, X., McCleese, C., Kolodziej, C., Samia, A.C.S., Zhao, Y., and Burda, C.: Identification and characterization of the intermediate phase in hybrid organic–inorganic MAPbI3 perovskite. Dalton Trans. 45(9), 3806 (2016).Google Scholar
Munir, R., Sheikh, A.D., Abdelsamie, M., Hu, H., Yu, L., Zhao, K., Kim, T., Tall, O.E., Li, R., Smilgies, D-M., and Amassian, A.: Hybrid perovskite thin-film photovoltaics: In situ diagnostics and importance of the precursor solvate phases. Adv. Mater. 29(2), 1604113 (2017).Google Scholar
Jeon, N.J., Noh, J.H., Kim, Y.C., Yang, W.S., Ryu, S., and Seok, S.I.: Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13(9), 897 (2014).Google Scholar
Rong, Y., Tang, Z., Zhao, Y., Zhong, X., Venkatesan, S., Graham, H., Patton, M., Jing, Y., Guloy, A.M., and Yao, Y.: Solvent engineering towards controlled grain growth in perovskite planar heterojunction solar cells. Nanoscale 7(24), 10595 (2015).Google Scholar
Yang, W.S., Noh, J.H., Jeon, N.J., Kim, Y.C., Ryu, S., Seo, J., and Seok, S.I.: High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348(6240), 1234 (2015).Google Scholar
Wakamiya, A., Endo, M., Sasamori, T., Tokitoh, N., Ogomi, Y., Hayase, S., and Murata, Y.: Reproducible fabrication of efficient perovskite-based solar cells: X-ray crystallographic studies on the formation of CH3NH3PbI3 layers. Chem. Lett. 43(5), 711 (2014).CrossRefGoogle Scholar
Zheng, H., Wang, W., Yang, S., Liu, Y., and Sun, J.: A facile way to prepare nanoporous PbI2 films and their application in fast conversion to CH3NH3PbI3 . RSC Adv. 6(2), 1611 (2016).Google Scholar
Hao, F., Stoumpos, C.C., Liu, Z., Chang, R.P.H., and Kanatzidis, M.G.: Controllable perovskite crystallization at a gas–solid interface for hole conductor-free solar cells with steady power conversion efficiency over 10%. J. Am. Chem. Soc. 136(46), 16411 (2014).CrossRefGoogle Scholar
Liang, K., Mitzi, D.B., and Prikas, M.T.: Synthesis and characterization of organic–inorganic perovskite thin films prepared using a versatile two-step dipping technique. Chem. Mater. 10(1), 403 (1998).Google Scholar
Shen, D., Yu, X., Cai, X., Peng, M., Ma, Y., Su, X., Xiao, L., and Zou, D.: Understanding the solvent-assisted crystallization mechanism inherent in efficient organic–inorganic halide perovskite solar cells. J. Mater. Chem. A 2(48), 20454 (2014).Google Scholar
Zhang, H., Mao, J., He, H., Zhang, D., Zhu, H.L., Xie, F., Wong, K.S., Grätzel, M., and Choy, W.C.H.: A smooth CH3NH3PbI3 film via a new approach for forming the PbI2 nanostructure together with strategically high CH3NH3I concentration for high efficient planar-heterojunction solar cells. Adv. Energy Mater. 5(23), 1501354 (2015).CrossRefGoogle Scholar
Zhou, Y., Yang, M., Vasiliev, A.L., Garces, H.F., Zhao, Y., Wang, D., Pang, S., Zhu, K., and Padture, N.P.: Growth control of compact CH3NH3PbI3 thin films via enhanced solid-state precursor reaction for efficient planar perovskite solar cells. J. Mater. Chem. A 3(17), 9249 (2015).Google Scholar
Wu, W., Li, H., Liu, S., Zheng, B., Xue, Y., Liu, X., and Gao, C.: Tuning PbI2 layers by n-butanol additive for improving CH3NH3PbI3 light harvesters of perovskite solar cells. RSC Adv. 6(92), 89609 (2016).Google Scholar
Cao, J., Wang, F., Yu, H., Zhou, Y., Lu, H., Zhao, N., and Wong, C-P.: Porous PbI2 films for the fabrication of efficient, stable perovskite solar cells via sequential deposition. J. Mater. Chem. A 4(26), 10223 (2016).Google Scholar
Liu, T., Hu, Q., Wu, J., Chen, K., Zhao, L., Liu, F., Wang, C., Lu, H., Jia, S., Russell, T., Zhu, R., and Gong, Q.: Mesoporous PbI2 scaffold for high-performance planar heterojunction perovskite solar cells. Adv. Energy Mater. 6(3), 1501890 (2016).CrossRefGoogle Scholar
Li, W., Fan, J., Li, J., Mai, Y., and Wang, L.: Controllable grain morphology of perovskite absorber film by molecular self-assembly toward efficient solar cell exceeding 17%. J. Am. Chem. Soc. 137(32), 10399 (2015).CrossRefGoogle ScholarPubMed
Grancini, G., Marras, S., Prato, M., Giannini, C., Quarti, C., De Angelis, F., De Bastiani, M., Eperon, G.E., Snaith, H.J., Manna, L., and Petrozza, A.: The impact of the crystallization processes on the structural and optical properties of hybrid perovskite films for photovoltaics. J. Phys. Chem. Lett. 5(21), 3836 (2014).CrossRefGoogle ScholarPubMed
Müller-Buschbaum, P.: The active layer morphology of organic solar cells probed with grazing incidence scattering techniques. Adv. Mater. 26(46), 7692 (2014).Google Scholar
Hexemer, A. and Müller-Buschbaum, P.: Advanced grazing-incidence techniques for modern soft-matter materials analysis. IUCrJ 2(1), 106 (2015).CrossRefGoogle ScholarPubMed
Chou, K.W., Khan, H.U., Niazi, M.R., Yan, B., Li, R., Payne, M.M., Anthony, J.E., Smilgies, D-M., and Amassian, A.: Late stage crystallization and healing during spin-coating enhance carrier transport in small-molecule organic semiconductors. J. Mater. Chem. C 2(28), 5681 (2014).CrossRefGoogle Scholar
Perez, L.A., Chou, K.W., Love, J.A., van der Poll, T.S., Smilgies, D-M., Nguyen, T-Q., Kramer, E.J., Amassian, A., and Bazan, G.C.: Solvent additive effects on small molecule crystallization in bulk heterojunction solar cells probed during spin casting. Adv. Mater. 25(44), 6380 (2013).Google Scholar
Masi, S., Rizzo, A., Munir, R., Listorti, A., Giuri, A., Corcione, C.E., Treat, N.D., Gigli, G., Amassian, A., Stingelin, N., and Colella, S.: Organic gelators as growth control agents for stable and reproducible hybrid perovskite-based solar cells. Adv. Energy Mater. 1602600 (2017). doi: 10.1002/aenm.201602600.Google Scholar