Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-09T12:48:07.108Z Has data issue: false hasContentIssue false

High-entropy functional materials

Published online by Cambridge University Press:  20 September 2018

Michael C. Gao*
Affiliation:
National Energy Technology Laboratory, Materials Engineering and Manufacturing Directorate, Albany, Oregon 97321, USA; and AECOM, Albany, Oregon 97321, USA
Daniel B. Miracle
Affiliation:
AF Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Ohio 45433, USA
David Maurice
Affiliation:
National Energy Technology Laboratory, Materials Engineering and Manufacturing Directorate, Albany, Oregon 97321, USA
Xuehui Yan
Affiliation:
The State Key Laboratory of Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 10083, People’s Republic of China
Yong Zhang
Affiliation:
The State Key Laboratory of Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 10083, People’s Republic of China
Jeffrey A. Hawk
Affiliation:
National Energy Technology Laboratory, Materials Engineering and Manufacturing Directorate, Albany, Oregon 97321, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

While most papers on high-entropy alloys (HEAs) focus on the microstructure and mechanical properties for structural materials applications, there has been growing interest in developing high-entropy functional materials. The objective of this paper is to provide a brief, timely review on select functional properties of HEAs, including soft magnetic, magnetocaloric, physical, thermoelectric, superconducting, and hydrogen storage. Comparisons of functional properties between HEAs and conventional low- and medium-entropy materials are provided, and examples are illustrated using computational modeling and tuning the composition of existing functional materials through substitutional or interstitial mixing. Extending the concept of high configurational entropy to a wide range of materials such as intermetallics, ceramics, and semiconductors through the isostructural design approach is discussed. Perspectives are offered in designing future high-performance functional materials utilizing the high-entropy concepts and high-throughput predictive computational modeling.

Type
Invited Review
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

b)

These authors were editors of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

References

REFERENCES

Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).CrossRefGoogle Scholar
Cantor, B., Chang, I.T.H., Knight, P., and Vincent, A.J.B.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375–377, 213 (2004).CrossRefGoogle Scholar
Gao, M.C., Zhang, C., Gao, P., Zhang, F., Ouyang, L.Z., Widom, M., and Hawk, J.A.: Thermodynamics of concentrated solid solution alloys. Curr. Opin. Solid State Mater. Sci. 21, 238 (2017).CrossRefGoogle Scholar
Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Z.P.: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1 (2014).CrossRefGoogle Scholar
Gao, M.C., Yeh, J.W., Liaw, P.K., and Zhang, Y.: High-Entropy Alloys: Fundamentals and Applications, 1st ed. (Springer International Publishing, Cham, 2016).CrossRefGoogle Scholar
Miracle, D.B. and Senkov, O.N.: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448 (2017).CrossRefGoogle Scholar
Yeh, J.W.: Physical metallurgy. In High Entropy Alloys: Fundamentals and Applications, Gao, M.C., Yeh, J.W., Liaw, P.K., and Zhang, Y., eds. (Springer International Publishing, Cham, 2016); p. 51.CrossRefGoogle Scholar
Miracle, D.B., Miller, J.D., Senkov, O.N., Woodward, C., Uchic, M.D., and Tiley, J.: Exploration and development of high entropy alloys for structural applications. Entropy 16, 494 (2014).CrossRefGoogle Scholar
Gorsse, S., Miracle, D.B., and Senkov, O.N.: Mapping the world of complex concentrated alloys. Acta Mater. 135, 177 (2017).CrossRefGoogle Scholar
Koch, C.C.: Nanocrystalline high-entropy alloys. J. Mater. Res. 32, 3435 (2017).CrossRefGoogle Scholar
Yeh, J.W., Chen, S.K., Shih, H.C., Zhang, Y., and Zuo, T.T.: Functional properties. In High Entropy Alloys: Fundamentals and Applications, Gao, M.C., Yeh, J.W., Liaw, P.K., and Zhang, Y., eds. (Springer International Publishing, Cham, 2016); p. 237.CrossRefGoogle Scholar
Perrin, A., Sorescu, M., Burton, M.T., Laughlin, D.E., and McHenry, M.: The role of compositional tuning of the distributed exchange on magnetocaloric properties of high-entropy alloys. JOM 69, 2125 (2017).CrossRefGoogle Scholar
Yuan, Y., Wu, Y., Tong, X., Zhang, H., Wang, H., Liu, X.J., Ma, L., Suo, H.L., and Lu, Z.P.: Rare-earth high-entropy alloys with giant magnetocaloric effect. Acta Mater. 125, 481 (2017).CrossRefGoogle Scholar
Shafeie, S., Guo, S., Hu, Q., Fahlquist, H., Erhart, P., and Palmqvist, A.: High-entropy alloys as high-temperature thermoelectric materials. J. Appl. Phys. 118, 184905 (2015).CrossRefGoogle Scholar
Fan, Z., Wang, H., Wu, Y., Liu, X.J., and Lu, Z.P.: Thermoelectric performance of PbSnTeSe high-entropy alloys. Mater. Res. Lett. 5, 187 (2017).Google Scholar
Fan, Z., Wang, H., Wu, Y., Liu, X.J., and Lu, Z.P.: Thermoelectric high-entropy alloys with low lattice thermal conductivity. RSC Adv. 6, 52164 (2016).CrossRefGoogle Scholar
Shi, Y., Yang, B., and Liaw, P.K.: Corrosion-resistant high-entropy alloys: A review. Metals 7, 43 (2017).CrossRefGoogle Scholar
Qiu, Y., Thomas, S., Gibson, M.A., Fraser, H.L., and Birbilis, N.: Corrosion of high entropy alloys. npj Mater. Degrad. 1, 15 (2017).CrossRefGoogle Scholar
Rodriguez, A.A., Tylczak, J., Gao, M.C., Jablonski, P.D., Detrois, M., Ziomek-Moroz, M., and Hawk, J.A.: Effect of molybdenum on the corrosion behavior of high-entropy alloys CoCrFeNi2 and CoCrFeNi2Mo0.25 under sodium chloride aqueous conditions. Adv. Mater. Sci. Eng. 2018, 3016304 (2017).Google Scholar
Yeh, J.W., Lin, S.J., Tsai, M.H., and Chang, S.Y.: High-entropy coatings. In High Entropy Alloys: Fundamentals and Applications, Gao, M.C., Yeh, J.W., Liaw, P.K., and Zhang, Y., eds. (Springer International Publishing, Cham, 2016); p. 469.CrossRefGoogle Scholar
Yeh, J.W., Yeh, A.C., and Chang, S.Y.: Potential applications and prospects. In High Entropy Alloys: Fundamentals and Applications, Gao, M.C., Yeh, J.W., Liaw, P.K., and Zhang, Y., eds. (Springer International Publishing, Cham, 2016); p. 493.CrossRefGoogle Scholar
Wang, X.F., Zhang, Y., Qiao, Y., and Chen, G.L.: Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys. Intermetallics 15, 357 (2007).CrossRefGoogle Scholar
Yao, C.Z., Zhang, P., Liu, M., Li, G.R., Ye, J.Q., Liu, P., and Tong, Y.X.: Electrochemical preparation and magnetic study of Bi–Fe–Co–Ni–Mn high entropy alloy. Electrochim. Acta 53, 8359 (2008).CrossRefGoogle Scholar
Zhang, K.B., Fu, Z.Y., Zhang, J.Y., Shi, J., Wang, W.M., Wang, H., Wang, Y.C., and Zhang, Q.J.: Annealing on the structure and properties evolution of the CoCrFeNiCuAl high-entropy alloy. J. Alloys Compd. 502, 295 (2010).CrossRefGoogle Scholar
Kao, Y.F., Chen, S.K., Chen, T.J., Chu, P.C., Yeh, J.W., and Lin, S.J.: Electrical, magnetic, and Hall properties of AlxCoCrFeNi high-entropy alloys. J. Alloys Compd. 509, 1607 (2011).CrossRefGoogle Scholar
Lucas, M.S., Mauger, L., Munoz, J.A., Xiao, Y., Sheets, A.O., Semiatin, S.L., Horwath, J., and Turgut, Z.: Magnetic and vibrational properties of high-entropy alloys. J. Appl. Phys. 109, 07E307 (2011).CrossRefGoogle Scholar
Liu, L., Zhu, J.B., Li, J.C., and Jiang, Q.: Microstructure and magnetic properties of FeNiCuMnTiSnx high entropy alloys. Adv. Engin. Mater. 14, 919 (2012).CrossRefGoogle Scholar
Ma, S.G. and Zhang, Y.: Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy. Mater. Sci. Eng., A 532, 480 (2012).CrossRefGoogle Scholar
Zhang, Y., Zuo, T.T., Cheng, Y.Q., and Liaw, P.K.: High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Sci. Rep. 3, 1455 (2013).CrossRefGoogle ScholarPubMed
Zuo, T.T., Ren, S.B., Liaw, P.K., and Zhang, Y.: Processing effects on the magnetic and mechanical properties of FeCoNiAl0.2Si0.2 high entropy alloy. Int. J. Miner. Metall. Mater. 20, 549 (2013).CrossRefGoogle Scholar
Tariq, N.H., Naeem, M., Hasan, B.A., Akhter, J.I., and Siddique, M.: Effect of W and Zr on structural, thermal and magnetic properties of AlCoCrCuFeNi high entropy alloy. J. Alloys Compd. 556, 79 (2013).CrossRefGoogle Scholar
Wang, J., Zheng, Z., Xu, J., and Wang, Y.: Microstructure and magnetic properties of mechanically alloyed FeSiSAlNi(Nb) high entropy alloys. J. Magn. Magn. Mater. 355, 58 (2014).CrossRefGoogle Scholar
Zuo, T.T., Li, R.B., Ren, X.J., and Zhang, Y.: Effects of Al and Si addition on the structure and properties of CoFeNi equal atomic ratio alloy. J. Magn. Magn. Mater. 371, 60 (2014).CrossRefGoogle Scholar
Zuo, T.T., Yang, X., Liaw, P.K., and Zhang, Y.: Influence of Bridgman solidification on microstructures and magnetic behaviors of a non-equiatomic FeCoNiAlSi high-entropy alloy. Intermetallics 67, 171 (2015).CrossRefGoogle Scholar
Ji, W., Wang, W., Wang, H., Zhang, J., Wang, Y., Zhang, F., and Fu, Z.: Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering. Intermetallics 56, 24 (2015).CrossRefGoogle Scholar
Qi, T.L., Li, Y.H., Takeuchi, A., Xie, G.Q., Miao, H.T., and Zhang, W.: Soft magnetic Fe25Co25Ni25(B, Si)25 high entropy bulk metallic glasses. Intermetallics 66, 8 (2015).CrossRefGoogle Scholar
Huang, S., Li, W., Li, X.Q., Schonecker, S., Bergqvist, L., Holmstrom, E., Varga, L.K., and Vitos, L.: Mechanism of magnetic transition in FeCrCoNi-based high entropy alloys. Mater. Des. 103, 71 (2016).CrossRefGoogle Scholar
Yu, P.F., Zhang, L.J., Cheng, H., Zhang, H., Ma, M.Z., Li, Y.C., Li, G., Liaw, P.K., and Liu, R.P.: The high-entropy alloys with high hardness and soft magnetic property prepared by mechanical alloying and high-pressure sintering. Intermetallics 70, 82 (2016).CrossRefGoogle Scholar
Lin, P-C., Cheng, C-Y., Yeh, J-W., and Chin, T-S.: Soft magnetic properties of high-entropy Fe–Co–Ni–Cr–Al–Si thin films. Entropy 18, 308 (2016).CrossRefGoogle Scholar
Zaddach, A.J., Niu, C., Oni, A.A., Fan, M., LeBeau, J.M., Irving, D.L., and Koch, C.C.: Structure and magnetic properties of a multi-principal element Ni–Fe–Cr–Co–Zn–Mn alloy. Intermetallics 68, 107 (2016).CrossRefGoogle Scholar
Li, P.P., Wang, A.D., and Liu, C.T.: A ductile high entropy alloy with attractive magnetic properties. J. Alloys Compd. 694, 55 (2017).CrossRefGoogle Scholar
Wei, R., Tao, J., Sun, H., Chen, C., Sun, G.W., and Li, F.S.: Soft magnetic Fe26.7Co26.7Ni26.6Si9B11 high entropy metallic glass with good bending ductility. Mater. Lett. 197, 87 (2017).CrossRefGoogle Scholar
Wei, R., Sun, H., Chen, C., Han, Z.H., and Li, F.S.: Effect of cooling rate on the phase structure and magnetic properties of Fe26.7Co28.5Ni28.5Si4.6B8.7P3 high entropy alloy. J. Magn. Magn. Mater. 435, 184 (2017).CrossRefGoogle Scholar
Mishra, R.K. and Shahi, R.R.: Phase evolution and magnetic characteristics of TiFeNiCr and TiFeNiCrM (M = Mn, Co) high entropy alloys. J. Magn. Magn. Mater. 442, 218 (2017).CrossRefGoogle Scholar
Li, P.P., Wang, A.D., and Liu, C.T.: Composition dependence of structure, physical and mechanical properties of FeCoNi(MnAl)x high entropy alloys. Intermetallics 87, 21 (2017).CrossRefGoogle Scholar
Zuo, T.T., Gao, M.C., Ouyang, L.Z., Yang, X., Cheng, Y.Q., Feng, R., Chen, S.Y., Liaw, P.K., Hawk, J.A., and Zhang, Y.: Tailoring magnetic behaviors of CoFeMnNiX (X = Al, Ga, and Sn) high entropy alloys by metal doping. Acta Mater. 130, 10 (2017).CrossRefGoogle Scholar
Shang, C., Axinte, E., Ge, W., Zhang, Z., and Wang, Y.: High-entropy alloy coatings with excellent mechanical, corrosion resistance and magnetic properties prepared by mechanical alloying and hot pressing sintering. Surf. Interfaces 9, 36 (2017).CrossRefGoogle Scholar
Zhang, Q., Xu, H., Tan, X.H., Hou, X.L., Wu, S.W., Tan, G.S., and Yu, L.Y.: The effects of phase constitution on magnetic and mechanical properties of FeCoNi(CuAl)x (x = 0–1.2) high-entropy alloys. J. Alloys Compd. 693, 1061 (2017).CrossRefGoogle Scholar
Schneeweiss, O., Friak, M., Dudova, M., Holec, D., Sob, M., Kriegner, D., Holy, V., Beran, P., George, E.P., Neugebauer, J., and Dlouhy, A.: Magnetic properties of the CrMnFeCoNi high-entropy alloy. Phys. Rev. B 96, 014437 (2017).CrossRefGoogle Scholar
Li, Z., Xu, H., Gu, Y., Pan, M., Yu, L., Tan, X., and Hou, X.: Correlation between the magnetic properties and phase constitution of FeCoNi(CuAl)0.8Gax (0 ≤ x ≤ 0.08) high-entropy alloys. J. Alloy. Comp. 746, 285 (2018).CrossRefGoogle Scholar
Yeh, J.W.: Alloy design strategies and future trends in high-entropy alloys. JOM 65, 1759 (2013).CrossRefGoogle Scholar
Gutfleisch, O., Willard, M.A., Brück, E., Chen, C.H., Sankar, S.G., and Liu, J.P.: Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient. Adv. Mater. 23, 821 (2011).CrossRefGoogle ScholarPubMed
Herzer, G.: Modern soft magnets: Amorphous and nanocrystalline materials. Acta Mater. 61, 718 (2013).CrossRefGoogle Scholar
Lucas, M.S., Belyea, D., Bauer, C., Bryant, N., Michel, E., Turgut, Z., Leontsev, S.O., Horwath, J., Semiatin, S.L., McHenry, M.E., and Miller, C.W.: Thermomagnetic analysis of FeCoCrxNi alloys: Magnetic entropy of high-entropy alloys. J. Appl. Phys. 113, 17A923 (2013).CrossRefGoogle Scholar
Ma, D., Grabowski, B., Kormann, F., Neugebauer, J., and Raabe, D.: Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one. Acta Mater. 100, 90 (2015).CrossRefGoogle Scholar
Huang, S., Holmström, E., Eriksson, O., and Vitos, L.: Mapping the magnetic transition temperatures for medium- and high-entropy alloys. Intermetallics 95, 80 (2018).CrossRefGoogle Scholar
Körmann, F., Hickel, T., and Neugebauer, J.: Influence of magnetic excitations on the phase stability of metals and steels. Curr. Opin. Solid State Mater. Sci. 20, 77 (2016).CrossRefGoogle Scholar
Körmann, F., Ma, D., Belyea, D.D., Lucas, M.S., Miller, C.W., Grabowski, B., and Sluiter, M.H.F.: “Treasure maps” for magnetic high-entropy-alloys from theory and experiment. Appl. Phys. Lett. 107, 142404 (2015).CrossRefGoogle Scholar
Belyea, D.D., Lucas, M.S., Michel, E., Horwath, J., and Miller, C.W.: Tunable magnetocaloric effect in transition metal alloys. Sci. Rep. 5, 15755 (2015).CrossRefGoogle ScholarPubMed
Shen, B.G., Sun, J.R., Hu, F.X., Zhang, H.W., and Cheng, Z.H.: Recent progress in exploring magnetocaloric materials. Adv. Mater. 21, 4545 (2009).CrossRefGoogle Scholar
Shen, J., Li, Y.X., Sun, J.R., and Shen, B.G.: Effect of R substitution on magnetic properties and magnetocaloric effects of La1−xRxFe11.5Si1.5 compounds with R = Ce, Pr, and Nd. Chin. Phys. B 18, 2058 (2009).Google Scholar
Jin, K. and Bei, H.: Single-phase concentrated solid-solution alloys: Bridging intrinsic transport properties and irradiation resistance. Front. Mater. 5, 1 (2018).CrossRefGoogle Scholar
Jin, K., Sales, B.C., Stocks, G.M., Samolyuk, G.D., Daene, M., Weber, W.J., Zhang, Y., and Bei, H.: Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity. Sci. Rep. 6, 20159 (2016).CrossRefGoogle ScholarPubMed
Snyder, G.J. and Toberer, E.S.: Complex thermoelectric materials. Nat. Mater. 7, 105 (2008).CrossRefGoogle ScholarPubMed
Zhang, Y.W., Stocks, G.M., Jin, K., Lu, C.Y., Bei, H.B., Sales, B.C., Wang, L.M., Beland, L.K., Stoller, R.E., Samolyuk, G.D., Caro, M., Caro, A., and Weber, W.J.: Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys. Nat. Commun. 6, 8736 (2015).CrossRefGoogle ScholarPubMed
Chou, H.P., Chang, Y.S., Chen, S.K., and Yeh, J.W.: Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys. Mater. Sci. Eng., B 163, 184 (2009).CrossRefGoogle Scholar
Pei, Y.Z., Shi, X.Y., LaLonde, A., Wang, H., Chen, L.D., and Snyder, G.J.: Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473, 66 (2011).CrossRefGoogle ScholarPubMed
Cahill, D.G., Braun, P.V., Chen, G., Clarke, D.R., Fan, S., Goodson, K.E., Keblinski, P., King, W.P., Mahan, G.D., Majumdar, A., Maris, H.J., Phillpot, S.R., Pop, E., and Shi, L.: Nanoscale thermal transport. II. 2003–2012. Appl. Phys. Rev. 1, 011305 (2014).CrossRefGoogle Scholar
Chen, Z-G., Han, G., Yang, L., Cheng, L., and Zou, J.: Nanostructured thermoelectric materials: Current research and future challenge. Prog. Nat. Sci.: Mater. Int. 22, 535 (2012).CrossRefGoogle Scholar
Pei, Y.Z., Wang, H., and Snyder, G.J.: Band engineering of thermoelectric materials. Adv. Mater. 24, 6125 (2012).CrossRefGoogle ScholarPubMed
Tan, G.J., Shi, F.Y., Hao, S.Q., Chi, H., Bailey, T.P., Zhao, L.D., Uher, C., Wolverton, C., Dravid, V.P., and Kanatzidis, M.G.: Valence band modification and high thermoelectric performance in SnTe heavily alloyed with MnTe. J. Am. Chem. Soc. 137, 11507 (2015).CrossRefGoogle ScholarPubMed
Orabi, R., Hwang, J., Lin, C.C., Gautier, R., Fontaine, B., Kim, W., Rhyee, J.S., Wee, D., and Fornari, M.: Ultralow lattice thermal conductivity and enhanced thermoelectric performance in SnTe:Ga materials. Chem. Mater. 29, 612 (2017).CrossRefGoogle Scholar
Liu, R.H., Chen, H.Y., Zhao, K.P., Qin, Y.T., Jiang, B.B., Zhang, T.S., Sha, G., Shi, X., Uher, C., Zhang, W.Q., and Chen, L.D.: Entropy as a gene-like performance indicator promoting thermoelectric materials. Adv. Mater. 29, 1702712 (2017).CrossRefGoogle ScholarPubMed
Hott, R., Kleiner, R., Wolf, T., and Zwicknagl, G.: Superconducting materials—A topical overview. In Frontiers in Superconducting Materials, Narlikar, A.V., ed. (Springer, Berlin, Heidelberg, 2005); p. 1.Google Scholar
Chu, C.W., Canfield, P.C., Dynes, R.C., Fisk, Z., Batlogg, B., Deutscher, G., Geballe, T.H., Zhao, Z.X., Greene, R.L., Hosono, H., and Maple, M.B.: Epilogue: Superconducting materials past, present and future. Phys. C 514, 437 (2015).CrossRefGoogle Scholar
Kozelj, P., Vrtnik, S., Jelen, A., Jazbec, S., Jaglicic, Z., Maiti, S., Feuerbacher, M., Steurer, W., and Dolinsek, J.: Discovery of a superconducting high-entropy alloy. Phys. Rev. Lett. 113, 107001 (2014).CrossRefGoogle ScholarPubMed
Guo, J., Wang, H.H., von Rohr, F., Wang, Z., Cai, S., Zhou, Y.Z., Yang, K., Li, A.G., Jiang, S., Wu, Q., Cava, R.J., and Sun, L.L.: Robust zero resistance in a superconducting high-entropy alloy at pressures up to 190 GPa. Proc. Natl. Acad. Sci. U. S. A. 114, 13144 (2017).CrossRefGoogle Scholar
Vrtnik, S., Kozelj, P., Meden, A., Maiti, S., Steurer, W., Feuerbacher, M., and Dolinsek, J.: Superconductivity in thermally annealed Ta–Nb–Hf–Zr–Ti high-entropy alloys. J. Alloys Compd. 695, 3530 (2017).CrossRefGoogle Scholar
von Rohr, F., Winiarski, M.J., Tao, J., Klimczuk, T., and Cava, R.J.: Effect of electron count and chemical complexity in the Ta–Nb–Hf–Zr–Ti high-entropy alloy superconductor. Proc. Natl. Acad. Sci. U. S. A. 113, E7144 (2016).CrossRefGoogle ScholarPubMed
von Rohr, F.O. and Cava, R.J.: Isoelectronic substitutions and aluminium alloying in the Ta–Nb–Hf–Zr–Ti high-entropy alloy superconductor. Phys. Rev. Mater. 2, 034801 (2018).CrossRefGoogle Scholar
Stolze, K., Tao, J., von Rohr, F.O., Kong, T., and Cava, R.J.: Sc–Zr–Nb–Rh–Pd and Sc–Zr–Nb–Ta–Rh–Pd high-entropy alloy superconductors on a CsCl-type lattice. Chem. Mater. 30, 906 (2018).CrossRefGoogle Scholar
Matthias, B.T.: Empirical relation between superconductivity and the number of valence electrons per atom. Phys. Rev. 97, 74 (1955).CrossRefGoogle Scholar
Collver, M.M. and Hammond, R.H.: Superconductivity in amorphous transition-metal alloy films. Phys. Rev. Lett. 30, 92 (1973).CrossRefGoogle Scholar
Xiang, X.D., Sun, X.D., Briceno, G., Lou, Y.L., Wang, K.A., Chang, H.Y., Wallacefreedman, W.G., Chen, S.W., and Schultz, P.G.: A combinatorial approach to materials discovery. Science 268, 1738 (1995).CrossRefGoogle ScholarPubMed
Sahlberg, M., Karlsson, D., Zlotea, C., and Jansson, U.: Superior hydrogen storage in high entropy alloys. Sci. Rep. 6, 36770 (2016).CrossRefGoogle ScholarPubMed
Kunce, I., Polanski, M., and Bystrzycki, J.: Microstructure and hydrogen storage properties of a TiZrNbMoV high entropy alloy synthesized using Laser Engineered Net Shaping (LENS). Int. J. Hydrogen Energy 39, 9904 (2014).CrossRefGoogle Scholar
Kunce, I., Polanski, M., and Bystrzycki, J.: Structure and hydrogen storage properties of a high entropy ZrTiVCrFeNi alloy synthesized using Laser Engineered Net Shaping (LENS). Int. J. Hydrogen Energy 38, 12180 (2013).CrossRefGoogle Scholar
Kao, Y.F., Chen, S.K., Sheu, J.H., Lin, J.T., Lin, W.E., Yeh, J.W., Lin, S.J., Liou, T.H., and Wang, C.W.: Hydrogen storage properties of multi-principal-component CoFeMnTixVyZrz alloys. Int. J. Hydrogen Energy 35, 9046 (2010).CrossRefGoogle Scholar
Kunce, I., Polanski, M., and Czujko, T.: Microstructures and hydrogen storage properties of La–Ni–Fe–V–Mn alloys. Int. J. Hydrogen Energy 42, 27154 (2017).CrossRefGoogle Scholar
Okamoto, H.: Desk Handbook: Phase Diagrams for Binary Alloys (ASM International, Materials Park, 2000).Google Scholar
Kumar, S., Jain, A., Ichikawa, T., Kojima, Y., and Dey, G.K.: Development of vanadium based hydrogen storage material: A review. Renewable Sustainable Energy Rev. 72, 791 (2017).CrossRefGoogle Scholar
Yang, S., Yang, F., Wu, C., Chen, Y., Mao, Y., and Luo, L.: Hydrogen storage and cyclic properties of (VFe)60(TiCrCo)40−xZrx (0 ≤ x ≤ 2) alloys. J. Alloys Compd. 663, 460 (2016).CrossRefGoogle Scholar
Kumar, A., Banerjee, S., Pillai, C.G.S., and Bharadwaj, S.R.: Hydrogen storage properties of Ti2−xCrVMx (M = Fe, Co, Ni) alloys. Int. J. Hydrogen Energy 38, 13335 (2013).CrossRefGoogle Scholar
Luo, H., Li, Z.M., and Raabe, D.: Hydrogen enhances strength and ductility of an equiatomic high-entropy alloy. Sci. Rep. 7, 9892 (2017).CrossRefGoogle ScholarPubMed
Zhao, Y., Lee, D-H., Lee, J-A., Kim, W-J., Han, H.N., Ramamurty, U., Suh, J-Y., and Jang, J-i.: Hydrogen-induced nanohardness variations in a CoCrFeMnNi high-entropy alloy. Int. J. Hydrogen Energy 42, 12015 (2017).CrossRefGoogle Scholar
Zhao, Y., Lee, D.H., Seok, M.Y., Lee, J.A., Phaniraj, M.P., Suh, J.Y., Ha, H.Y., Kim, J.Y., Ramamurty, U., and Jang, J.I.: Resistance of CoCrFeMnNi high-entropy alloy to gaseous hydrogen embrittlement. Scripta Mater. 135, 54 (2017).CrossRefGoogle Scholar
Green, M.L., Takeuchi, I., and Hattrick-Simpers, J.R.: Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials. J. Appl. Phys. 113, 231101 (2013).CrossRefGoogle Scholar
Yu, C., Zhu, T-J., Shi, R-Z., Zhang, Y., Zhao, X-B., and He, J.: High-performance half-Heusler thermoelectric materials Hf1−xZrxNiSn1−ySby prepared by levitation melting and spark plasma sintering. Acta Mater. 57, 2757 (2009).CrossRefGoogle Scholar
Xie, W., Weidenkaff, A., Tang, X., Zhang, Q., Poon, J., and Tritt, T.: Recent advances in nanostructured thermoelectric half-heusler compounds. Nanomaterials 2, 379 (2012).CrossRefGoogle ScholarPubMed
Yin, M. and Nash, P.: Standard enthalpies of formation of selected XYZ half-Heusler compounds. J. Chem. Thermodyn. 91, 1 (2015).CrossRefGoogle Scholar
Rost, C.M., Sachet, E., Borman, T., Moballegh, A., Dickey, E.C., Hou, D., Jones, J.L., Curtarolo, S., and Maria, J-P.: Entropy-stabilized oxides. Nat. Commun. 6, 8485 (2015).CrossRefGoogle ScholarPubMed
Jiang, S.C., Hu, T., Gild, J., Zhou, N.X., Nie, J.Y., Qin, M.D., Harrington, T., Vecchio, K., and Luo, J.: A new class of high-entropy perovskite oxides. Scripta Mater. 142, 116 (2018).CrossRefGoogle Scholar
Sarkar, A., Djenadic, R., Usharani, N.J., Sanghvi, K.P., Chakravadhanula, V.S.K., Gandhi, A.S., Hahn, H., and Bhattacharya, S.S.: Nanocrystalline multicomponent entropy stabilised transition metal oxides. J. Eur. Ceram. Soc. 37, 747 (2017).CrossRefGoogle Scholar
Djenadic, R., Sarkar, A., Clemens, O., Loho, C., Botros, M., Chakravadhanula, V.S.K., Kubel, C., Bhattacharya, S.S., Gandhif, A.S., and Hahn, H.: Multicomponent equiatomic rare earth oxides. Mater. Res. Lett. 5, 102 (2017).CrossRefGoogle Scholar
Berardan, D., Meena, A.K., Franger, S., Herrero, C., and Dragoe, N.: Controlled Jahn–Teller distortion in (MgCoNiCuZn)O-based high entropy oxides. J. Alloys Compd. 704, 693 (2017).CrossRefGoogle Scholar
Berardan, D., Franger, S., Dragoe, D., Meena, A.K., and Dragoe, N.: Colossal dielectric constant in high entropy oxides. Phys. Status Solidi Rapid Res. Lett. 10, 328 (2016).CrossRefGoogle Scholar
Anand, G., Wynn, A.P., Handley, C.M., and Freeman, C.L.: Phase stability and distortion in high-entropy oxides. Acta Mater. 146, 119 (2018).CrossRefGoogle Scholar
Gild, J., Zhang, Y., Harrington, T., Jiang, S., Hu, T., Quinn, M.C., Mellor, W.M., Zhou, N., Vecchio, K., and Luo, J.: High-entropy metal diborides: A new class of high-entropy materials and a new type of ultrahigh temperature ceramics. Sci. Rep. 6, 37946 (2016).CrossRefGoogle Scholar
Cheng, K.H., Lai, C.H., Lin, S.J., and Yeh, J.W.: Recent progress in multi-element alloy and nitride coatings sputtered from high-entropy alloy targets. Ann. Chimie Sci. Matériaux 31, 723 (2006).CrossRefGoogle Scholar
Lai, C.H., Lin, S.J., Yeh, J.W., and Davison, A.: Effect of substrate bias on the structure and properties of multi-element (AlCrTaTiZr)N coatings. J. Phys. D: Appl. Phys. 39, 4628 (2006).CrossRefGoogle Scholar
Lai, C.H., Cheng, K.H., Lin, S.J., and Yeh, J.W.: Mechanical and tribological properties of multi-element (AlCrTaTiZr)N coatings. Surf. Coating. Technol. 202, 3732 (2008).CrossRefGoogle Scholar
Tsai, M.H., Lai, C.H., Yeh, J.W., and Gan, J.Y.: Effects of nitrogen flow ratio on the structure and properties of reactively sputtered (AlMoNbSiTaTiVZr)Nx coatings. J. Phys. D: Appl. Phys. 41, 235402 (2008).CrossRefGoogle Scholar
Tsai, M.H., Wang, C.W., Lai, C.H., Yeh, J.W., and Gan, J.Y.: Thermally stable amorphous (AlMoNbSiTaTiVZr)50N50 nitride film as diffusion barrier in copper metallization. Appl. Phys. Lett. 92, 052109 (2008).CrossRefGoogle Scholar
Huang, P.K. and Yeh, J.W.: Effects of substrate temperature and post-annealing on microstructure and properties of (AlCrNbSiTiV)N coatings. Thin Solid Films 518, 180 (2009).CrossRefGoogle Scholar
Huang, P.K. and Yeh, J.W.: Effects of nitrogen content on structure and mechanical properties of multi-element (AlCrNbSiTiV)N coating. Surf. Coating. Technol. 203, 1891 (2009).CrossRefGoogle Scholar
Huang, P.K. and Yeh, J.W.: Inhibition of grain coarsening up to 1000 °C in (AlCrNbSiTiV)N superhard coatings. Scripta Mater. 62, 105 (2010).CrossRefGoogle Scholar
Takeuchi, A., Amiya, K., Wada, T., and Yubuta, K.: Alloy design for high-entropy alloys based on Pettifor map for binary compounds with 1:1 stoichiometry. Intermetallics 66, 56 (2015).CrossRefGoogle Scholar
Takeuchi, A., Wada, T., and Zhang, Y.: MnFeNiCuPt and MnFeNiCuCo high-entropy alloys designed based on L10 structure in Pettifor map for binary compounds. Intermetallics 82, 107 (2017).CrossRefGoogle Scholar
Otto, F., Yang, Y., Bei, H., and George, E.P.: Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 61, 2628 (2013).CrossRefGoogle Scholar
Feng, R., Liaw, P.K., Gao, M.C., and Widom, M.: First-principles prediction of high-entropy-alloy stability. npj Comput. Mater. 3, 50 (2017).CrossRefGoogle Scholar
Gao, M.C., Gao, P., Hawk, J.A., Ouyang, L.Z., Alman, D.E., and Widom, M.: Computational modeling of high-entropy alloys: Structures, thermodynamics and elasticity. J. Mater. Res. 32, 3627 (2017).CrossRefGoogle Scholar
Tian, F.Y., Wang, Y., Irving, D.L., and Vitos, L.: Applications of coherent potential approximation to HEAs. In High-Entropy Alloys: Fundamentals and Applications, Gao, M.C., Yeh, J.W., Liaw, P.K., and Zhang, Y., eds. (Springer International Publishing, Cham, 2016); p. 299.CrossRefGoogle Scholar
Gao, M.C., Zhang, B., Guo, S.M., Qiao, J.W., and Hawk, J.A.: High-entropy alloys in hexagonal close packed structure. Metall. Mater. Trans. A 47, 3322 (2016).CrossRefGoogle Scholar
Santodonato, L.J., Zhang, Y., Feygenson, M., Parish, C.M., Gao, M.C., Weber, R.J.K., Neuefeind, J.C., Tang, Z., and Liaw, P.K.: Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy. Nat. Commun. 6, 5964 (2015).CrossRefGoogle ScholarPubMed
Choi, W.M., Jo, Y.H., Sohn, S.S., Lee, S., and Lee, B.J.: Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: An atomistic simulation study. npj Comput. Mater. 4, 1 (2018).CrossRefGoogle Scholar
Widom, M., Huhn, W.P., Maiti, S., and Steurer, W.: Hybrid Monte Carlo/molecular dynamics simulation of a refractory metal high entropy alloy. Metall. Mater. Trans. A 45, 196 (2014).CrossRefGoogle Scholar
Huhn, W.P. and Widom, M.: Prediction of A2 to B2 phase transition in the high-entropy alloy Mo–Nb–Ta–W. JOM 65, 1772 (2013).CrossRefGoogle Scholar
Senkov, O.N., Miller, J.D., Miracle, D.B., and Woodward, C.: Accelerated exploration of multi-principal element alloys with solid solution phases. Nat. Commun. 6, 6529 (2015).CrossRefGoogle ScholarPubMed
Zhang, C. and Gao, M.C.: CALPHAD modeling of high-entropy alloys. In High-Entropy Alloys: Fundamentals and Applications, Gao, M.C., Yeh, J.W., Liaw, P.K., and Zhang, Y., eds. (Springer International Publishing, Cham, 2016); p. 399.CrossRefGoogle Scholar
Gao, M.C. and Alman, D.E.: Searching for next single-phase high-entropy alloy compositions. Entropy 15, 4504 (2013).CrossRefGoogle Scholar