Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T09:37:17.089Z Has data issue: false hasContentIssue false

Heteroepitaxy of distorted rutile-structure WO2 and NbO2 thin films

Published online by Cambridge University Press:  11 September 2013

Franklin J. Wong*
Affiliation:
School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
Shriram Ramanathan
Affiliation:
School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We present an experimental study on the epitaxy and orientational relationships of WO2 and NbO2 films on (0001) Al2O3, (111) MgAl2O4, and (111) MgO substrates, as well as WO2 on (111) SrTiO3. The higher symmetry of the substrate planes compared to the film planes leads to the formation of epitaxial structural variants, and they are related by the surface rotational symmetry elements of the substrates. WO2 and NbO2 crystallize in distorted versions of the rutile structure, and we discuss our findings in context of the rutile unit cell. Our results are applicable to other compounds that occur in (distorted) rutile structures. For the case of NbO2 thin films, we also demonstrate that they can be grown epitaxially on (10$\bar 1$2) and (10$\bar 1$0) Al2O3, lower symmetry surfaces; in these cases, surface symmetry does not induce the formation of epitaxial rotational variants, though domains related by glide symmetry are possible.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hotsenpiller, P.A.M., Wilson, G.A., Roshko, A., Rothman, J.B., and Rohrer, G.S.: Heteroepitaxial growth of TiO2 films by ion-beam sputter deposition. J. Cryst. Growth 166(1–4), 779 (1996).CrossRefGoogle Scholar
Chen, S., Mason, M.G., Gysling, H.J., Pazpujalt, G.R., Blanton, T.N., Castro, T., Chen, K.M., Fictorie, C.P., Gladfelter, W.L., Franciosi, A., Cohen, P.I., and Evans, J.F.: Ultrahigh-vacuum metalorganic chemical-vapor-deposition growth and in-situ characterization of epitaxial TiO2 films. J. Vac. Sci. Technol., A 11(5), 2419 (1993).CrossRefGoogle Scholar
Gao, Y., Thevuthasan, S., McCready, D.E., and Engelhard, M.: MOCVD growth and structure of Nb- and V-doped TiO2 films on sapphire. J. Cryst. Growth 212(1–2), 178 (2000).CrossRefGoogle Scholar
Flynn, C.P. and Eades, J.A.: Structural variants in heteroepitaxial growth. Thin Solid Films 389(1–2), 116 (2001).CrossRefGoogle Scholar
Grundmann, M.: Formation of epitaxial domains: Unified theory and survey of experimental results. Phys. Status Solidi B 248(4), 805 (2011).CrossRefGoogle Scholar
Wu, Z.P., Yamamoto, S., Miyashita, A., Zhang, Z.J., Narumi, K., and Naramoto, H.: Single-crystalline epitaxy and twinned structure of vanadium dioxide thin film on (0001) sapphire. J. Phys. Condens. Matter 10(48), L765 (1998).CrossRefGoogle Scholar
Zhou, H., Chisholm, M.F., Yang, T.H., Pennycook, S.J., and Narayan, J.: Role of interfacial transition layers in VO2/Al2O3 heterostructures. J. Appl. Phys. 110(7), 073515 (2011).CrossRefGoogle Scholar
Wong, F.J., Zhou, Y., and Ramanathan, S.: Epitaxial variants of VO2 thin films on complex oxide single crystal substrates with 3m surface symmetry. J. Cryst. Growth 364, 74 (2013).CrossRefGoogle Scholar
Yang, Z. and Ramanathan, S.: Direct measurement of compositional complexity-induced electronic inhomogeneity in VO2 thin films grown on gate dielectrics. Appl. Phys. Lett. 98(19), 192113 (2011).CrossRefGoogle Scholar
Engel-Herbert, R., Jalan, B., Cagnon, J., and Stemmer, S.: Microstructure of epitaxial rutile TiO2 films grown by molecular beam epitaxy on r-plane Al2O3. J. Cryst. Growth 312(1), 149 (2009).CrossRefGoogle Scholar
Dominguez, J.E., Fu, L., and Pan, X.Q.: Epitaxial nanocrystalline tin dioxide thin films grown on (0001) sapphire by femtosecond pulsed laser deposition. Appl. Phys. Lett. 79(5), 614 (2001).CrossRefGoogle Scholar
Pan, X.Q., Fu, L., and Dominguez, J.E.: Structure-property relationship of nanocrystalline tin dioxide thin films grown on ( $\bar 1$012) sapphire. J. Appl. Phys. 89(11), 6056 (2001).CrossRefGoogle Scholar
Zhao, Y., Lee, J.H., Zhu, Y.H., Nazari, M., Chen, C.H., Wang, H.Y., Bernussi, A., Holtz, M., and Fan, Z.Y.: Structural, electrical, and terahertz transmission properties of VO2 thin films grown on c-, r-, and m-plane sapphire substrates. J. Appl. Phys. 111(5), 053533 (2012).CrossRefGoogle Scholar
Yang, T.H., Aggarwal, R., Gupta, A., Zhou, H.H., Narayan, R.J., and Narayan, J.: Semiconductor-metal transition characteristics of VO2 thin films grown on c- and r-sapphire substrates. J. Appl. Phys. 107(5), 053514 (2010).CrossRefGoogle Scholar
Kawakubo, T. and Nakagawa, T.: Phase transition in VO2. J. Phys. Soc. Jpn. 19(4), 517 (1964).CrossRefGoogle Scholar
Goodenough, J.B.: Direct cation–cation interactions in several oxides. Phys. Rev. 117(6), 1442 (1960).CrossRefGoogle Scholar
Andersson, G.: Studies on vanadium oxides. 2. The crystal structure of vanadium dioxide. Acta Chem. Scand. 10(4), 623 (1956).CrossRefGoogle Scholar
Palmer, D.J. and Dickens, P.G.: Tungsten dioxide - structure refinement by powder neutron-diffraction. Acta Crystallogr., Sect. B: Struct. Sci. 35, 2199 (1979). (PDF 01-071-0614).CrossRefGoogle Scholar
Wriedt, H.A.: The O-W (oxygen-tungsten) system. Bulletin of Alloy Phase Diagrams 10, 368 (1989).CrossRefGoogle Scholar
Colton, R.J. and Rabalais, J.W.: Electronic-structure of tungsten and some of its borides, carbides, nitrides, and oxides by x-ray electron spectroscopy. Inorg. Chem. 15(1), 236 (1976).CrossRefGoogle Scholar
Katoh, M. and Takeda, Y.: Chemical state analysis of tungsten and tungsten oxides using an electron probe microanalyzer. Jpn. J. Appl. Phys. 43(10), 7292 (2004).CrossRefGoogle Scholar
Khyzhun, O.Y.: XPS, XES and XAS studies of the electronic structure of tungsten oxides. J. Alloys Compd. 305(1–2), 1 (2000).CrossRefGoogle Scholar
Sarma, D.D. and Rao, C.N.R.: XPES studies of oxides of 2nd-row and 3rd-row transition-metals including rare-earths. J. Electron Spectrosc. 20(1–2), 25 (1980).CrossRefGoogle Scholar
Jones, F.H., Egdell, R.G., Brown, A., and Wondre, F.R.: Surface structure and spectroscopy of WO2(012). Surf. Sci. 374(1–3), 80 (1997).CrossRefGoogle Scholar
Gulino, A., Parker, S., Jones, F.H., and Egdell, R.G.: Influence of metal-metal bonds on electron spectra of MoO2 and WO2. J. Chem. Soc., Faraday Trans. 92(12), 2137 (1996).CrossRefGoogle Scholar
Sakata, T., Sakata, K., and Nishida, I.: Study of phase transition in NbO2. Phys. Status Solidi B 20(2), K155 (1967).CrossRefGoogle Scholar
Bolzan, A.A., Fong, C., Kennedy, B.J., and Howard, C.J.: A powder neutron-diffraction study of semiconducting and metallic niobium dioxide. J. Solid State Chem. 113(1), 9 (1994). (PDF 01-082-1141).CrossRefGoogle Scholar
Gannon, J.R. and Tilley, R.J.D.: Microstructure of slightly substoichiometric NbO2. J. Solid State Chem. 20(4), 331 (1977).CrossRefGoogle Scholar
Vanlanduyt, J., Gevers, R., and Amelinckx, S.: Electron microscopic study of twins, anti-phase boundaries, and dislocations in thin films of rutile. Phys. Status Solidi B 7(1), 307 (1964).CrossRefGoogle Scholar
Burdett, J.K.: Electronic control of the geometry of rutile and related structures. Inorg. Chem. 24(14), 2244 (1985).CrossRefGoogle Scholar
Chang, H.L.M., You, H., Gao, Y., Guo, J., Foster, C.M., Chiarello, R.P., Zhang, T.J., and Lam, D.J.: Structural properties of epitaxial TiO2 films grown on sapphire (11 $\bar 2$0) by MOCVD. J. Mater. Res. 7(9), 2495 (1992).CrossRefGoogle Scholar