Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T16:07:19.780Z Has data issue: false hasContentIssue false

First-principles studies of lattice dynamics and thermal properties of Mg2Si1−xSnx

Published online by Cambridge University Press:  14 August 2015

Xiaohua Liu
Affiliation:
State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
Yi Wang*
Affiliation:
Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA
Jorge O. Sofo
Affiliation:
Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA; and Department of Physics and Material Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, USA
Tiejun Zhu
Affiliation:
State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
Long-Qing Chen
Affiliation:
Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA
Xinbing Zhao*
Affiliation:
State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

We present the results of a mixed-space approach, based on first-principles calculations, to investigate phonon dispersions and thermal properties of Mg2Si and Mg2Sn, including the bulk modulus, Grüneisen parameter, heat capacity, and Debye temperature. It is shown that good agreements are obtained between the calculated results and available experimental data for both phonon dispersions and thermal properties. The phonon dispersions are accurately calculated compared with experimental data due to the high-quality description of LO–TO splitting and transverse acoustic branches along the Γ-K-X symmetry line. We also calculate the heat capacity CP and Debye temperature of Mg2Si1−xSnx alloys (x = 0.375, 0.5, 0.625, 0.875). The CP values at high temperature range from 0.5 to 0.7 J/g/K and ΘD values at room temperature from 332 to 384 K as the Sn content decreases from 0.875 to 0.375.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Goldsmid, H.J.: Applications of Thermoelectricity (Methuen Monograph, London, 1960); p. 93.Google Scholar
Goldsmid, H.J.: Thermoelectric Refrigeration (Plenum Press, New York, 1964); p. 6.Google Scholar
Pei, Y.Z., Shi, X.Y., LaLonde, A.D., Wang, H., Chen, L.D., and Snyder, G.J.: Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473, 66 (2011).Google Scholar
Pei, Y.Z., Wang, H., and Snyder, G.J.: Band engineering of thermoelectric materials. Adv. Mater. 24, 6125 (2012).Google Scholar
Heremans, J.P., Jovovic, V., Toberer, E.S., Saramat, A., Kurosaki, K., Charoenphakdee, A., Yamanaka, S., and Snyder, G.J.: Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321, 554 (2008).Google Scholar
Mahan, G.D. and Sofo, J.O.: The best thermoelectric. Proc. Natl. Acad. Sci. U. S. A. 93, 7436 (1996).Google Scholar
Jaworski, C.M., Wiendlocha, B., Jovovic, V., and Heremans, J.P.: Combining alloy scattering of phonons and resonant electronic levels to reach a high thermoelectric figure of merit in PbTeSe and PbTeS alloys. Energy Environ. Sci. 4, 4155 (2011).Google Scholar
Zaitsev, V.K., Fedorov, M.I., Eremin, I.S., and Gurieva, E.A.: Thermoelectric Handbook, Macro to Nano, Vols. 29 and 31 (CRC Taylor & Francis, Boca Raton, 2006).Google Scholar
Zaitsev, V.K., Fedorov, M.I., Gurieva, E.A., Eremin, I.S., Konstantinov, P.P., Samunin, A.Y., and Vedernikov, M.V.: Highly effective Mg2Si1−xSnx thermoelectrics. Phys. Rev. B 74, 045207 (2006).Google Scholar
Liu, W., Tang, X.F., Li, H., Sharp, J., Zhou, X.Y., and Uher, C.: Optimized thermoelectric properties of Sb-doped Mg2(1+z)Si0.5−ySn0.5Sby through adjustment of the Mg content. Chem. Mater. 23, 5256 (2011).CrossRefGoogle Scholar
Liu, W., Tan, X.J., Yin, K., Liu, H.J., Tang, X.F., Shi, J., Zhang, Q.J., and Uher, C.: Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1−xSnx solid solutions. Phys. Rev. Lett. 108, 166601 (2012).Google Scholar
Zhang, Q., He, J., Zhu, T.J., Zhang, S.N., Zhao, X.B., and Tritt, T.M.: High figures of merit and natural nanostructures in Mg2Si0.4Sn0.6 based thermoelectric materials. Appl. Phys. Lett. 93, 102109 (2008).CrossRefGoogle Scholar
Du, Z.L., Zhu, T.J., Chen, Y., He, J., Gao, H.L., Jiang, G.Y., Tritt, T.M., and Zhao, X.B.: Roles of interstitial Mg in improving thermoelectric properties of Sb-doped Mg2Si0.4Sn0.6 solid solutions. J. Mater. Chem. 22, 6838 (2012).Google Scholar
Gao, H.L., Zhu, T.J., Liu, X.X., Chen, L.X., and Zhao, X.B.: Flux synthesis and thermoelectric properties of eco-friendly Sb doped Mg2Si0.5Sn0.5 solid solutions for energy harvesting. J. Mater. Chem. 21, 5933 (2011).Google Scholar
Liu, X.H., Zhu, T.J., Wang, H., Hu, L.P., Xie, H.H., Jiang, G.Y., Snyder, G.J., and Zhao, X.B.: Low electron scattering potentials in high performance Mg2Si0.45Sn0.55 based thermoelectric solid solutions with band convergence. Adv. Energy Mater. 3, 1238 (2013).Google Scholar
Jiang, G.Y., He, J., Zhu, T.J., Fu, C.G., Liu, X.H., Hu, L.P., and Zhao, X.B.: High performance Mg2(Si,Sn) solid solutions: A point defect chemistry approach to enhancing thermoelectric properties. Adv. Funct. Mater. 24, 3776 (2014).Google Scholar
Baranek, P., Schamps, J., and Noiret, I.: Ab initio studies of electronic structure, phonon modes, and elastic properties of Mg2Si. J. Phys. Chem. B 101, 9147 (1997).CrossRefGoogle Scholar
Boulet, P., Verstraete, M.J., Crocombette, J.P., Briki, M., and Record, M.C.: Electronic properties of the Mg2Si thermoelectric material investigated by linear-response density-functional theory. Comput. Mater. Sci. 50, 847 (2011).Google Scholar
Tani, J-i. and Kido, H.: First-principles and experimental studies of impurity doping into Mg2Si. Intermetallics 16, 418 (2008).CrossRefGoogle Scholar
Tan, X.J., Liu, W., Liu, H.J., Shi, J., Tang, X.F., and Uher, C.: Multiscale calculations of thermoelectric properties of n-type Mg2Si1−xSnx solid solutions. Phys. Rev. B 85, 205212 (2012).Google Scholar
Baranek, P. and Schamps, J.: Influence of electronic correlation on structural, dynamic, and elastic properties of Mg2Si. J. Phys. Chem. B 103, 2601 (1999).Google Scholar
Tani, J-i. and Kido, H.: Lattice dynamics of Mg2Si and Mg2Ge compounds from first-principles calculations. Comput. Mater. Sci. 42, 531 (2008).Google Scholar
Duman, S., Tutuncu, H.M., Bagci, S., and Srivastava, G.P.: Ab initio determination of structural and dynamical properties of Mg2Sn. In Six International Conference of the Balkan Physical Union, Vol. 899, Cetin, S.A. and Hikmet, I. eds. (American Institute of Physics, New York, NY, 2007); p. 247.Google Scholar
Ganeshan, S., Shang, S.L., Wang, Y., and Liu, Z.K.: Temperature dependent elastic coefficients of Mg2X (X = Si, Ge, Sn, Pb) compounds from first-principles calculations. J. Alloys Compd. 498, 191 (2010).Google Scholar
Pandit, P. and Sanyal, S.P.: First principles study of electronic, elastic and lattice dynamical properties of Mg2X (X= Si, Ge and Sn) compounds. Indian J. Pure Appl. Phys. 49, 692 (2011).Google Scholar
Li, W., Lindsay, L., Broido, D.A., Stewart, D.A., and Mingo, N.: Thermal conductivity of bulk and nanowire Mg2SixSn1−x alloys from first principles. Phys. Rev. B 86, 174307 (2012).Google Scholar
Wang, H.F., Chu, W.G., and Jin, H.: Theoretical study on thermoelectric properties of Mg2Si and comparison to experiments. Comput. Mater. Sci. 60, 224 (2012).Google Scholar
Wang, H.F., Jin, H., Chu, W.G., and Guo, Y.J.: Thermodynamic properties of Mg2Si and Mg2Ge investigated by first principles method. J. Alloys Compd. 499, 68 (2010).Google Scholar
Wang, Y., Shang, S.L., Liu, Z.K., and Chen, L.Q.: Mixed-space approach for calculation of vibration-induced dipole-dipole interactions. Phys. Rev. B 85, 224303 (2012).Google Scholar
Wang, Y., Chen, L.Q., and Liu, Z.K.: YPHON: A package for calculating phonons of polar materials. Comput. Phys. Commun. 185, 2950 (2014).Google Scholar
Kresse, G. and Hafner, J.: Ab initio molecular-dynamics for liquid-metals. Phys. Rev. B 47, 558 (1993).Google Scholar
Kresse, G. and Furthmuller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).Google Scholar
Perdew, J.P. and Zunger, A.: Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048 (1981).Google Scholar
Blochl, P.E., Jepsen, O., and Andersen, O.K.: Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 49, 16223 (1994).Google Scholar
Gajdos, M., Hummer, K., Kresse, G., Furthmuller, J., and Bechstedt, F.: Linear optical properties in the projector-augmented wave methodology. Phys. Rev. B 73, 045112 (2006).CrossRefGoogle Scholar
Cochran, W. and Cowley, R.A.: Dielectric constants and lattice vibrations. J. Phys. Chem. Solids 23, 447 (1962).Google Scholar
Baroni, S., de Gironcoli, S., Dal Corso, A., and Giannozzi, P.: Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515 (2001).CrossRefGoogle Scholar
Wang, Y., Liu, Z.K., and Chen, L.Q.: Thermodynamic properties of Al, Ni, NiAl, and Ni3Al from first-principles calculations. Acta Mater. 52, 2665 (2004).Google Scholar
Shang, S-L., Wang, Y., Kim, D., and Liu, Z-K.: First-principles thermodynamics from phonon and Debye model: Application to Ni and Ni3Al. Comput. Mater. Sci. 47, 1040 (2010).Google Scholar
Wang, Y., Wang, J.J., Wang, W.Y., Mei, Z.G., Shang, S.L., Chen, L.Q., and Liu, Z.K.: A mixed-space approach to first-principles calculations of phonon frequencies for polar materials. J. Phys.: Condens. Matter 22, 202201 (2010).Google Scholar
Mermin, N.D. and Achcroft, N.W.: Solid State Physics (Harcourt College Publishers, Philadelphia, 1976); p. 457.Google Scholar
Hutchings, M.T., Farley, T.W.D., Hackett, M.A., Hayes, W., Hull, S., and Steigenberger, U.: Neutron-scattering investigation of lattice-dynamics and thermally induced disorder in the antifluorite Mg2Si. Solid State Ionics 28, 1208 (1988).Google Scholar
Buchenauer, C.J. and Cardona, M.: Raman scattering in Mg2Si, Mg2Ge and Mg2Sn. Phys. Rev. B 3, 2504 (1971).Google Scholar
McWilliams, D. and Lynch, D.W.: Infrared reflectivities of magnesium silicide, germanide, and stannide. Phys. Rev. 130, 2248 (1963).CrossRefGoogle Scholar
Kearney, R.J., Worlton, T.G., and Schmunk, R.E.: Lattice dynamics of magnesium stannide at room temperature. J. Phys. Chem. Solids 31, 1085 (1970).Google Scholar
Geick, R., Hakel, W.J., and Perry, C.H.: Temperature dependence of far-infrared reflectivity of magnesium stannide. Phys. Rev. 148, 824 (1966).Google Scholar
Bessas, D., Simon, R.E., Friese, K., Koza, M., and Hermann, R.P.: Lattice dynamics in intermetallic Mg2Ge and Mg2Si. J. Phys.: Condens. Matter 26, 485401 (2014).Google Scholar
Gerstein, B.C., Jelinek, F.J., Habensch, M., Shickell, W.D., Mullaly, J.R., and Chung, P.L.: Thermal study of group 2-4 semiconductors-lattice heat capacities and free energies of formation. Heat capacity of Mg2Si from 15 degrees–300 degrees K. J. Chem. Phys. 47, 2109 (1967).Google Scholar
Jelinek, F.J., Shickell, W.D., and Gerstein, B.C.: Thermal study of group 2-4 semiconductors.2.Heat capacity of Mg2Sn in range 5-300 degrees K. J. Phys. Chem. Solids 28, 267 (1967).Google Scholar
Whitten, W.B., Chung, P.L., and Danielson, G.C.: Elastic constants and lattice vibration frequencies of Mg2Si. J. Phys. Chem. Solids 26, 49 (1965).CrossRefGoogle Scholar
Wang, Y., Saal, J.E., Wu, P., Wang, J., Shang, S., Liu, Z-K., and Chen, L-Q.: First-principles lattice dynamics and heat capacity of BiFeO3. Acta Mater. 59, 4229 (2011).Google Scholar
Delaire, O., May, A.F., McGuire, M.A., Porter, W.D., Lucas, M.S., Stone, M.B., Abernathy, D.L., Ravi, V.A., Firdosy, S.A., and Snyder, G.J.: Phonon density of states and heat capacity of La3−xTe4. Phys. Rev. B 80, 184302 (2009).Google Scholar
Madelung, L.B.o.O. ed.: Numerical Data and Functional Relationships in Science and Technology, GroupIII, Vol. 17e, Springer-Verlag, Berlin.Google Scholar