Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T09:25:11.692Z Has data issue: false hasContentIssue false

Extended x-ray absorption fine structure study on amorphous Nd–Fe–B alloys

Published online by Cambridge University Press:  31 January 2011

Hiroyuki Kageyama
Affiliation:
Agency of Industrial Science and Technology, Osaka National Research Institute, 1-8-31 Midorigaoka, Ikeda, Osaka 563
Kohei Kadono
Affiliation:
Agency of Industrial Science and Technology, Osaka National Research Institute, 1-8-31 Midorigaoka, Ikeda, Osaka 563
Kohei Fukumi
Affiliation:
Agency of Industrial Science and Technology, Osaka National Research Institute, 1-8-31 Midorigaoka, Ikeda, Osaka 563
Tetsuji Saito
Affiliation:
Corporate R&D Center, Mitsui Mining & Smelting Co. Ltd., 1333–2 Haraichi, Ageo, Saitama 363, Japan
Toshiro Kuji
Affiliation:
Corporate R&D Center, Mitsui Mining & Smelting Co. Ltd., 1333–2 Haraichi, Ageo, Saitama 363, Japan
Get access

Abstract

The local structure and crystallization behavior of Nd15Fe77Bx (x = 2−14) melt-spun alloys were studied by Nd L3 extended x-ray absorption fine structure (EXAFS). The conventional x-ray powder diffractometry studies showed that the Nd–Fe–B melt-spun ribbons had the amorphous structure regardless of the boron content. EXAFS studies of the local structure around the Nd atom confirmed that the Nd–Fe–B melt-spun alloys had the amorphous structure and virtually the same nearest neighbor distance from the Nd atom. The amorphous alloys were heated by a differential scanning calorimetry in order to investigate the variation in the local structure during the crystallization process by EXAFS measurements. Although no appreciable difference was found in the nearest neighbor distance of the Nd atom between the amorphous alloys and the crystallized alloys, the small variation in the nearest neighbor distance during the crystallization process was detected by EXAFS measurements.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Croat, J. J., Herbst, J. F., Lee, R. W., and Pinkerton, F. E., J. Appl. Phys. 55, 2078 (1984).CrossRefGoogle Scholar
2.Sagawa, M., Fujimura, S., Togawa, N., Yamamoto, H., and Matsuura, Y., J. Appl. Phys. 55, 2083 (1984).CrossRefGoogle Scholar
3.Wecker, J. and Shultz, L., J. Appl. Phys. 62, 990 (1987).CrossRefGoogle Scholar
4.Lee, R. W., Brewer, E. G., and Shaffel, N. A., IEEE Trans. Mag. MAG-21, 1958 (1985).CrossRefGoogle Scholar
5.Mishra, R. K., J. Magn. Magn. Mater. 54–57, 450 (1986).CrossRefGoogle Scholar
6.Harada, T., Ando, T., O'Handley, R. C., and Grant, N. J., J. Appl. Phys. 67, 4233 (1990).CrossRefGoogle Scholar
7.Harada, T. and Kuji, T., J. Appl. Phys. 72, 5443 (1992).CrossRefGoogle Scholar
8.Harada, T. and Kuji, T., J. Mater. Res. 9, 372 (1994).CrossRefGoogle Scholar
9.Kim, S. H., Matsuura, M., Sakurai, M., and Suzuki, K., Jpn. J. Appl. Phys. 32 Suppl. 32–2, 676 (1992).CrossRefGoogle Scholar
10.Nasu, T., Edwards, A. M., Cho, Y., Sayers, D. E., and Koch, C. C., Jpn. J. Appl. Phys. 32 Suppl. 32–2, 688 (1992).CrossRefGoogle Scholar
11.Kageyama, H., Kadono, K., Fukumi, K., Harada, T., and Kuji, T., Physica B, 629 (1995).Google Scholar
12.Buschow, K. H. J., De Mooij, D. B., and Van Noort, H. M., J. Less-Common Met. 125, 135 (1986).CrossRefGoogle Scholar
13.Jha, J. and Davies, H. A., J. Non-Cryst. Solids 113, 185 (1989).CrossRefGoogle Scholar
14.Clavaguera-Mora, M. T., Bar, M. D., Surich, S., and Clavaguera, N., J. Mater. Res. 5, 1201 (1990).CrossRefGoogle Scholar
15.Kageyama, H., Kamijo, N., Asai, T., Saito, Y., Ado, K., and Nakamura, O., Solid State Ionics 40/41, 350 (1990).CrossRefGoogle Scholar
16.Maeda, H., Terauchi, H., Tanabe, K., Kamijo, N., Hida, M., and Kawamura, H., J. Phys. Soc. Jpn. 21, 1342 (1982).CrossRefGoogle Scholar
17.Shoemaker, C. B., Shoemaker, D. P., and Fruchart, R., Acta Crystallogr. C40, 1665 (1984).Google Scholar
18.Rehr, J. J., Albers, R. C., and Zabinsky, S. I., Phys. Rev. Lett. 69, 3397 (1992).CrossRefGoogle Scholar
19.Marquardt, D. W., J. Soc. Indust. Appl. Math. 11, 443 (1963).CrossRefGoogle Scholar
20. Standard and Criteria Workshops Report, in X-ray Absorption Fine Structure, edited by Hasnain, S. S. (Ellis Horwood, London, 1990), p. 750.Google Scholar
21.Vaarkamp, M., Dring, I., Oldman, R. J., Stern, E. A., and Konigsbeger, D. C., Phys. Rev. 50, 7872 (1994).CrossRefGoogle Scholar
22.Mckale, A. D., Veal, B. W., Paulikas, A. P., Chan, S-K., and Knapp, G. S., J. Am. Chem. Soc. 251, 3763 (1988).CrossRefGoogle Scholar
23.Teo, B. K., Antonio, M. R., and Arorill, B. A., J. Am. Chem. Soc. 105, 3751 (1983).CrossRefGoogle Scholar
24.Maeda, H., Jpn. J. Phys. Soc. 56, 2777 (1987).CrossRefGoogle Scholar
25.Liao, L-X. and Altounian, Z., J. Appl. Phys. 66, 768 (1989).CrossRefGoogle Scholar
26.Teo, B. K., EXAFS: Basis Principals and Data Analysis, Inorganic Chemistry Concepts, Vol. 9 (Springer-Verlag, New York, 1986), p. 79.Google Scholar
27.Herbst, J. F., Rev. Mod. Phys. 63, 819 (1991).CrossRefGoogle Scholar