Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T05:46:23.610Z Has data issue: false hasContentIssue false

Enhanced hydrothermal conversion of surfactant-modified diatom microshells into barium titanate replicas

Published online by Cambridge University Press:  03 March 2011

Eric M. Ernst
Affiliation:
Center for Biologically Enabled Advanced Manufacturing, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
Ben C. Church
Affiliation:
Center for Biologically Enabled Advanced Manufacturing, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
Christopher S. Gaddis
Affiliation:
Center for Biologically Enabled Advanced Manufacturing, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
Robert L. Snyder*
Affiliation:
Center for Biologically Enabled Advanced Manufacturing, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
Kenneth H. Sandhage
Affiliation:
Center for Biologically Enabled Advanced Manufacturing, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
*
a) This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr_policy.
Get access

Abstract

The three-dimensional nanostructured SiO2-based microshells of diatoms have been converted into nanocrystalline BaTiO3 via a series of shape-preserving reactions. The microshells, obtained as diatomaceous earth, were first exposed to a surfactant-induced dissolution/reprecipitation process [C.E. Fowler, et al., Chem. Phys. Lett.398, 414 (2004)] to enhance the microshell surface area, without altering the microshell shape. The SiO2 microshells were then converted into anatase TiO2 replicas via reaction with TiF4 gas and then humid oxygen. Hydrothermal reaction with a barium hydroxide-bearing solution then yielded three-dimensional nanocrystalline microshell replicas composed of BaTiO3. The enhanced surface area of the surfactant-treated microshells resulted in faster conversion into phase-pure BaTiO3 at 100 °C.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Haertling, G.H.: Ferroelectric ceramics: History and technology. J. Am. Ceram. Soc. 82, 797 (1999).CrossRefGoogle Scholar
2Miclea, C., Tanasoiu, C., Miclea, C.F., and Tanasoiu, V.: Advanced electroceramic materials for electrotechnical applications. J. Optoelectron. Adv. Mater. 4, 51 (2002).Google Scholar
3Pandey, D., Singh, A.P., and Tiwari, V.S.: Developments in ferroelectric ceramics for capacitor applications. Bull. Mater. Sci. 15, 391 (1992).CrossRefGoogle Scholar
4Alles, A.B., Amarakoon, V.R.W., and Burdick, V.L.: Positive temperature coefficient of resistivity effect in undoped, atmospherically reduced barium titanate. J. Am. Ceram. Soc. 72, 148 (1989).CrossRefGoogle Scholar
5Caballero, A.C., Villegas, M., Fernandez, J.F., Viviani, M., Buscaglia, M.T., and Leoni, M.: Effect of humidity on the electrical response of porous BaTiO3 ceramics. J. Mater. Sci. Lett. 18, 1297 (1999).CrossRefGoogle Scholar
6Haeusler, A. and Meyer, J-U.: A novel thick film conductive type CO2 sensor. Sens. Actuators, B Chem. 34, 388 (1996).CrossRefGoogle Scholar
7Li, J., Yong, J., and Kuwabara, M.: Photoluminescence and its enhancement of Pr+3-doped BaTiO3 phosphor. Jpn. J. Appl. Phys. 2 Lett. 44, L708 (2005).CrossRefGoogle Scholar
8Cruz, D. Hernandez, Sahouli, B., Tork, A., Knystautas, E.J., and Lessard, R.A.: XPS and RBS analysis of the composition and structure of barium titanate thin films to be used in DRAMs. SPIE Proc. 4296, 244 (2001).CrossRefGoogle Scholar
9Pithan, C., Hennings, D., and Waser, R.: Progress in the synthesis of nanocrystalline BaTiO3 powders for MLCC. Int. J. Appl. Ceram. Technol. 2, 1 (2005).CrossRefGoogle Scholar
10Hennings, D.F.K., Schreinemacher, B. Seriyati, and Schreinemacher, H.: Solid-state preparation of BaTiO3-based dielectrics, using ultrafine raw materials. J. Am. Ceram. Soc. 84, 2777 (2001).CrossRefGoogle Scholar
11Potdar, H.S., Singh, P., Deshpande, S.B., Godgole, P.D., and Date, S.K.: Low-temperature synthesis of ultrafine barium titanate (BaTiO3) using organometallic barium and titanium precursors. Mater. Lett. 10, 112 (1990).CrossRefGoogle Scholar
12Wada, S., Narahara, M., Hoshina, T., Kakemoto, H., and Tsurumi, T.: Preparation of nm-sized BaTiO3 particles using a new 2-step thermal decomposition of barium titanyl oxalate. J. Mater. Sci. 38, 2655 (2003).CrossRefGoogle Scholar
13O’Brien, S., Brus, L., and Murray, C.B.: Synthesis of monodisperse nanoparticles of barium titanate: Toward a generalized strategy of oxide nanoparticle synthesis. J. Am. Chem. Soc. 123, 12085 (2001).CrossRefGoogle Scholar
14Pechini, M.P.: Method of preparing lead and alkaline earth titanates and niobates and coating methods using the same to form a capacitor, U.S. Patent No. 3 330 697 (1967).Google Scholar
15Hu, M.Z-C., Kurian, V., Payzant, E.A., Rawn, C.J., and Hunt, R.D.: Wet-chemical synthesis of monodispersed barium titanate particles—Hydrothermal conversion of TiO2 microspheres to nanocrystalline BaTiO3. Powder Technol. 110, 2 (2000).CrossRefGoogle Scholar
16Zhu, W., Akbar, S.A., Asiaie, R., and Dutta, P.K.: Synthesis, microstructure, and electrical properties of hydrothermally prepared ferroelectric BaTiO3 thin films. J. Electroceram. 2, 21 (1998).CrossRefGoogle Scholar
17Ueyama, R., Harada, M., Ueyama, T., Yamamoto, T., Shiosaki, T., Kiyoshi, K., Koumoto, K., and Seo, W.S.: Preparation of BaTiO3 ultrafine particles by micro-emulsion charring method. J. Mater. Sci. Mater. Electron. 11, 139 (2000).CrossRefGoogle Scholar
18Stojanovic, B.D.: Mechanochemical synthesis of ceramic powders with perovskite structure. J. Mater. Process. Technol. 143–144, 78 (2003).CrossRefGoogle Scholar
19Luo, S., Tang, Z., Yao, W., and Zhang, Z.: Low-temperature combustion synthesis and characterization of nanosized tetragonal barium titanate powders. Microelectron. Eng. 66, 147 (2003).CrossRefGoogle Scholar
20Frey, M.H. and Payne, D.A.: Nanocrystalline barium titanate: Evidence for the absence of ferroelectricity in sol-gel derived thin-layer capacitors. Appl. Phys. Lett. 63, 2753 (1993).CrossRefGoogle Scholar
21Kamigaki, Y., Nagakari, T., and Nanbu, S.: Ceramic capacitor from cubic BaTiO3, Japan Patent No. 08330179 (December 13, 1996).Google Scholar
22Wang, J., Wan, H., and Lin, Q.: Properties of a nanocrystalline barium titanate on silicon humidity sensor. Meas. Sci. Technol. 14, 172 (2003).CrossRefGoogle Scholar
23Wang, J., Xu, B., Liu, G., Zhang, J., and Zhang, T.: Improvement of nanocrystalline BaTiO3 humidity sensing properties. Sens. Actuators, B Chem. 66, 159 (2000).CrossRefGoogle Scholar
24Wei, Q., Luo, W.D., Liao, B., Liu, Y., and Wang, G.: Giant capacitance effect and physical model of nanocrystalline CuO–BaTiO3 semiconductor as a CO2 gas sensor. J. Appl. Phys. 88, 4818 (2000).CrossRefGoogle Scholar
25Alencar, M.A.R.C., Maciel, G.S., de Araujo, C.B., and Patra, A.: Er+3-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor. Appl. Phys. Lett. 84, 4753 (2004).CrossRefGoogle Scholar
26Joshi, U.A., Yoon, S., Baik, S., and Lee, J.S.: Surfactant-free hydrothermal synthesis of highly tetragonal barium titanate nanowires: A structural investigation. J. Phys. Chem. 110, 12249 (2006).CrossRefGoogle ScholarPubMed
27Wei, J.H., Shi, J., Liu, Z.Y., and Wang, J.B.: Polymer-assisted synthesis of BaTiO3 nanorods. J. Mater. Sci. 41, 3127 (2006).CrossRefGoogle Scholar
28Luo, Y., Szafraniak, I., Zakharov, N.D., Nagarajan, V., Steinhart, M., Wehrspohn, R.B., Wendorff, J.H., Ramesh, R., and Alexe, M.: Nanoshell tubes of ferroelectric lead zirconate titanate and barium titanate. Appl. Phys. Lett. 83, 440 (2003).CrossRefGoogle Scholar
29Nakano, H. and Nakamura, H.: Preparation of hollow BaTiO3 and anatase spheres by the layer-by-layer colloidal templating method. J. Am. Ceram. Soc. 89, 1455 (2006).CrossRefGoogle Scholar
30Lee, J-Y., Hong, S-H., Lee, J-H., Lee, Y.K., and Choi, J-Y.: Uniform coating of nanometer-scale BaTiO3 layer on spherical Ni particles via hydrothermal conversion of Ti-hydroxide. J. Am. Ceram. Soc. 88, 303 (2005).CrossRefGoogle Scholar
31Aizenberg, J., Weaver, J.C., Thanawala, M.S., Sundar, V.C., Morse, D.E., and Fratzl, P.: Skeleton of Euplectella sp.: Structural hierarchy from the nanoscale to the macroscale. Science 309, 275 (2005).CrossRefGoogle Scholar
32Aizenberg, J., Tkachenko, A., Weiner, S., Addadi, L., and Hendler, G.: Calcitic microlenses as part of the photoreceptor system in brittlestars. Nature 412, 819 (2001).CrossRefGoogle ScholarPubMed
33Addadi, L., Joester, D., Nudelman, F., and Weiner, S.: Mollusk shell formation: A source of new concepts for understanding biomineralization processes. Chem. A. Eur. J. 12, 980 (2006).CrossRefGoogle ScholarPubMed
34Schuler, D. and Frankel, R.B.: Bacterial magnetosomes: Microbiology, biomineralization and biotechnological applications. Appl. Microbiol. Biotechnol. 52, 464 (1999).Google ScholarPubMed
35Bauerlein, E.: Biomineralization of unicellular organisms: An unusual membrane biochemistry for the production of inorganic nano- and microstructures. Angew. Chem. Int. Ed. Engl. 42, 614 (2003).CrossRefGoogle ScholarPubMed
36Young, J.R., Davis, S.A., Bown, P.R., and Mann, S.: Coccolith ultrastructure and biomineralisation. J. Struct. Biol. 126, 195 (1999).CrossRefGoogle ScholarPubMed
37Young, J.R. and Henriksen, K.: Biomineralization within vesicles: The calcite of coccoliths. Rev. Mineral. Geochem. 54, 189 (2003).CrossRefGoogle Scholar
38Hildebrand, M. and Wetherbee, R.: Components and control of silicification in diatoms, in Progress in Molecular and Subcellular Biology Vol. 33, edited by Muller, W.E.G. (Springer-Verlag, Berlin, Germany, 2003), p. 11.Google Scholar
39Crawford, S.A., Higgins, M.J., Mulvaney, P., and Wetherbee, R.: Nanostructure of the diatom microshell as revealed by atomic force and scanning electron microscopy. J. Phycol. 37, 543 (2001).CrossRefGoogle Scholar
40Round, F.E., Crawford, R.M., and Mann, D.G.: The diatoms: Biology and morphology of the genera (Cambridge University Press, Cambridge, UK, 1990).Google Scholar
41Mann, D.G. and Droop, S.J.M.: Biodiversity, biogeography, and conservation of diatoms. Hydrobiol. 336, 19 (1996).CrossRefGoogle Scholar
42Lebeau, T. and Robert, J-M.: Diatom cultivation and biotechnologically relevant products. Part I: Cultivation at various length scales. Appl. Microbiol. Biotechnol. 60, 612 (2003).CrossRefGoogle Scholar
43Duerr, E.O., Molnar, A., and Sato, V.: Cultured microalgae as aquaculture feeds. J. Mar. Biotechnol. 7, 65 (1998).Google Scholar
44Apt, K.E., Kroth-Pancic, P.G., and Grossmann, A.R.: Stable nuclear transformation of the diatom Phaeodactylum tricornutum. Mol. Gen. Genomics. 252, 572 (1999).Google Scholar
45Fisher, H., Robl, I., Sumper, M., and Kröger, N.: Targeting and covalent modification of cell wall and membrane proteins heterogeneously expressed in the diatom Cylindrotheca fusiformis. J. Phycol. 35, 113 (1999).CrossRefGoogle Scholar
46Hildebrand, M.: Prospects of manipulating diatom silica nanostructure. J. Nanosci. Nanotechnol. 5, 146 (2005).CrossRefGoogle ScholarPubMed
47Sandhage, K.H., Snyder, R.L., Ahmad, G., Allan, S.M., Cai, Y., Dickerson, M.B., Gaddis, C.S., Haluska, M.S., Shian, S., Weatherspoon, M.R., Rapp, R.A., Unocic, R.R., Zalar, F.M., Zhang, Y., Hildebrand, M., and Palenik, B.P.: Merging biological self-assembly with synthetic chemical tailoring: The potential for 3-D genetically-engineered micro/nanodevices (3-D GEMS). Int. J. Appl. Ceram. Technol. 2, 317 (2005).CrossRefGoogle Scholar
48Sandhage, K.H.: Shaped microcomponents via reactive conversion of biologically-derived microtemplates, U.S. Patent No. 7 067 104 (June 27, 2006).Google Scholar
49Sandhage, K.H., Dickerson, M.B., Huseman, P.M., Caranna, M.A., Clifton, J.D., Bull, T.A., Heibel, T.J., Overton, W.R., and Schoenwaelder, M.E.A.: Novel, bioclastic route to self-assembled, 3-D, chemically tailored meso/nanostructures: Shape-preserving reactive conversion of biosilica (diatom) microshells. Adv. Mater. 14, 429 (2002).3.0.CO;2-C>CrossRefGoogle Scholar
50Zalar, F.M., Dickerson, M.B., and Sandhage, K.H.: Self-assembled, 3-D nanoparticle structures with tailored chemistries via the BaSIC process, in Processing and Fabrication of Advanced Materials XI Vol. 2, edited by Srivatsan, T.S. and Varin, R.A. (ASM International, Materials Park, OH, 2003), p. 415.Google Scholar
51Unocic, R.R., Zalar, F.M., Sarosi, P.M., Cai, Y., and Sandhage, K.H.: Anatase assemblies from algae: Coupling biological self-assembly of 3-D nanoparticle structures with synthetic reaction chemistry. Chem. Commun. 7, 795 (2004).Google Scholar
52Cai, Y., Allan, S.M., Zalar, F.M., and Sandhage, K.H.: Three-dimensional magnesia-based nanocrystal assemblies via low-temperature magnesiothermic reaction of diatom microshells. J. Am. Ceram. Soc. 88, 2005 (2005).CrossRefGoogle Scholar
53Shian, S., Cai, Y., Weatherspoon, M.R., Allan, S.M., and Sandhage, K.H.: Three-dimensional assemblies of zirconia nanocrystals via shape-preserving reactive conversion of diatom microshells. J. Am. Ceram. Soc. 89, 694 (2006).CrossRefGoogle Scholar
54Lytle, J.C., Yan, H., Turgeon, R.T., and Stein, A.: Multistep, low-temperature pseudomorphic transformations of nanostructured silica to titania via a titanium oxyfluoride intermediate. Chem. Mater. 16, 3829 (2004).CrossRefGoogle Scholar
55Machin, J.S. and Deadmore, D.L.: Thermal stability of titanium dioxide. Nature. 189, 223 (1961).CrossRefGoogle Scholar
56Cai, Y., Weatherspoon, M.R., Ernst, E., Haluska, M.S., Snyder, R.L., and Sandhage, K.H.: 3-D microparticles of BaTiO3 and Zn2SiO4 via the chemical (sol-gel, acetate, or hydrothermal) conversion of biological (diatom) templates. Ceram. Eng. Sci. Proc. 27, 49 (2006).Google Scholar
57Dudley, S., Kalem, T., and Akinc, M.: Conversion of SiO2 diatom microshells to BaTiO3 and SrTiO3. J. Am. Ceram. Soc. 89, 2434 (2006).CrossRefGoogle Scholar
58Anderson, M.W., Holmes, S.M., Hanif, N., and Cundy, C.S.: Hierarchical pore structures through diatom zeolitization. Angew. Chem. Int. Ed. Engl. 39, 2707 (2000).3.0.CO;2-M>CrossRefGoogle ScholarPubMed
59Wang, Y., Tang, Y., Dong, A., Wang, X., Ren, N., and Gao, Z.: Zeolitization of diatomite to prepare hierarchical porous zeolite materials through a vapor phase transport process. J. Mater. Chem. 12, 1812 (2002).CrossRefGoogle Scholar
60Gaddis, C.S. and Sandhage, K.H.: Freestanding microscale 3-D polymeric structures with biologically-derived shapes and nanoscale features. J. Mater. Res. 19, 2541 (2004).CrossRefGoogle Scholar
61Rosi, N.L., Thaxton, C.S., and Mirkin, C.A.: Control of nanoparticle assembly by using DNA-modified diatom templates. Angew. Chem. Int. Ed. Engl. 43, 5500 (2004).CrossRefGoogle ScholarPubMed
62Weatherspoon, M.R., Allan, S.M., Hunt, E., Cai, Y., and Sandhage, K.H.: Sol-gel synthesis on self-replicating single-cell scaffolds: Applying complex chemistries to nature’s 3-D nanostructured templates. Chem. Commun. 5, 651 (2005).CrossRefGoogle Scholar
63Cai, Y. and Sandhage, K.H.: Zn2SiO4-coated microparticles with biologically-controlled 3-D shapes. Phys. Status Solidi A. 202, R105 (2005).CrossRefGoogle Scholar
64Zhao, J., Gaddis, C.S., Cai, Y., and Sandhage, K.H.: Free-standing microscale structures of zirconia nanocrystals with biologically replicable 3-D shapes. J. Mater. Res. 20, 282 (2005).CrossRefGoogle Scholar
65Weatherspoon, M.R., Haluska, M.S., Cai, Y., King, J.S., Summers, C.J., Snyder, R.L., and Sandhage, K.H.: Phosphor microparticles of controlled 3-D shape from phytoplankton. J. Electrochem. Soc. 153, H34 (2006).CrossRefGoogle Scholar
66Gaddis, C.S.: Diatom alchemy. M.S. Thesis, Georgia Institute of Technology (2004), p. 62.Google Scholar
67Fowler, C.E., Hoog, Y., Vidal, L., and Lebeau, B.: Mesoporosity in diatoms via surfactant induced silica rearrangement. Chem. Phys. Lett. 398, 414 (2004).CrossRefGoogle Scholar
68Barrett, E.P., Joyner, L.G., and Halenda, P.P.: The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 373 (1951).CrossRefGoogle Scholar
69Eckert, J.O. Jr., Hung-Houston, C.C., Gersten, B.L., Lencka, M.M., and Riman, R.E.: Kinetics and mechanisms of hydrothermal synthesis of barium titanate. J. Am. Ceram. Soc. 79, 2929 (1996).CrossRefGoogle Scholar
70Chen, K-Y. and Chen, Y-W.: Preparation of monodispersed spherical barium titanate particles. J. Mater. Sci. 40, 991 (2005).CrossRefGoogle Scholar
71Padture, N.P. and Wei, X.: Hydrothermal synthesis of thin films of barium titanate ceramic nano-tubes at 200 °C. J. Am. Ceram. Soc. 86, 2215 (2003).CrossRefGoogle Scholar
72Watanabe, K., Okada, T., Choe, I., and Sato, Y.: Organic vapor sensitivity in a porous silicon device. Sens. Actuators B 33, 194 (1996).CrossRefGoogle Scholar
73Hertl, W.: Kinetics of barium titanate synthesis. J. Am. Ceram. Soc. 71, 879 (1988).CrossRefGoogle Scholar