Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T03:21:26.024Z Has data issue: false hasContentIssue false

Effects of defect on thermal stability and photoluminescence in quenched Ho-doped 0.94Na0.5Bi0.5TiO3–0.06BaTiO3 lead-free ceramics

Published online by Cambridge University Press:  05 October 2020

Lai-Qi Zheng
Affiliation:
Jiangxi Key Laboratory of Advanced Ceramic Materials, Department of Material Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen333001, P.R. China
Chao Chen*
Affiliation:
Jiangxi Key Laboratory of Advanced Ceramic Materials, Department of Material Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen333001, P.R. China Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Hubei University, Wuhan430062, P.R. China
Xiang-Ping Jiang*
Affiliation:
Jiangxi Key Laboratory of Advanced Ceramic Materials, Department of Material Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen333001, P.R. China
Xing-An Jiang
Affiliation:
Jiangxi Key Laboratory of Advanced Ceramic Materials, Department of Material Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen333001, P.R. China
Xiao-Kun Huang
Affiliation:
Jiangxi Key Laboratory of Advanced Ceramic Materials, Department of Material Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen333001, P.R. China
Xin Nie
Affiliation:
Jiangxi Key Laboratory of Advanced Ceramic Materials, Department of Material Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen333001, P.R. China
Jun-Ming Liu
Affiliation:
Laboratory of Solid State Microstructures, Nanjing University, Nanjing210093, P.R. China
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

Solid solution 0.94Na0.5Bi0.5TiO3–6BaTiO3 (NBT–6BT) is considered to be one kind of lead-free piezoelectric materials with excellent electrical properties due to the existence of morphotropic phase boundary (MPB). However, its relatively lower depolarization temperature is a long-standing bottleneck for the application of NBT-based piezoelectric ceramics. In this work, the influence of thermal quenching on depolarization temperature and electrical properties of rare-earth Ho-doped NBT–6BT lead-free ceramics was investigated. It was shown that the relative high piezoelectric performance, as well as an improvement of depolarization temperature (Td), can be realized by thermal quenching. The results showed that the quenching process induced high concentration of oxygen vacancy, giving rise to the change of octahedra mode and enhanced lattice distortion, which is benefit to the temperature stability of piezoelectric and ferroelectric properties. Furthermore, up-conversion photoluminescence (PL) of Ho-doped NBT–6BT could be effectively tuned by the introduction of oxygen vacancy, suggesting a promising potential in optical–electrical multifunctional devices.

Type
Invited Paper
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Catalan, G. and Scott, J.F.: Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463 (2009).CrossRefGoogle Scholar
Chu, Y.H., Martin, L.W., Holcomb, M.B., and Ramesh, R.: Controlling magnetism with multiferroics. Mater. Today 10, 16 (2007).CrossRefGoogle Scholar
Dong, X.W., Wang, K.F., Luo, S.J., Wan, J.G., and Liu, J.M.: Coexistence of magnetic and ferroelectric behaviors of pyrochlore Ho2Ti2O7. J. Appl. Phys. 106, 321 (2009).CrossRefGoogle Scholar
Fiebig, M.: TOPICAL REVIEW: Revival of the magnetoelectric effect. J. Phys. D: Appl. Phys. 38, R123 (2005).CrossRefGoogle Scholar
Kimura, T., Goto, T., Shintani, H., Ishizaka, K., Arima, T., and Tokura, Y.: Magnetic control of ferroelectric polarization. Nature 426, 55 (2003).CrossRefGoogle ScholarPubMed
Wang, Y., Wen, X., Jia, Y., Huang, M., and Wang, Y.: Piezo-catalysis for nondestructive tooth whitening. Nat. Commun. 11, 1328 (2020).CrossRefGoogle ScholarPubMed
Maurya, D., Pramanick, A., Feygenson, M., Neuefeind, J.C., and Priya, S.: Effect of poling on nanodomains and nanoscale structure in A-site disordered lead-free piezoelectric Na0.5Bi0.5TiO3-BaTiO3. J. Mater. Chem. C 2, 8423 (2014).CrossRefGoogle Scholar
Wang, Y., Luo, C., Wang, S., Chen, C., Yuan, G., Luo, H., and Viehland, D.: Large piezoelectricity in ternary lead-free single crystals. Adv. Electron. Mater. 6, 1900949 (2020).CrossRefGoogle Scholar
Levin, I. and Reaney, I.M.: Nano- and mesoscale structure of Na1/2Bi1/2TiO3: A TEM perspective. Adv. Funct. Mater. 22, 3445 (2012).CrossRefGoogle Scholar
Li, M., Pietrowski, M.J., De Souza, R.A., Zhang, H., Reaney, I.M., Cook, S.N., Kilner, J.A., and Sinclair, D.C.: A family of oxide ion conductors based on the ferroelectric perovskite Na0.5Bi0.5TiO3. Nat. Mater. 13, 31 (2014).CrossRefGoogle ScholarPubMed
Hiruma, Y., Nagata, H., and Takenaka, T.: Thermal depoling process and piezoelectric properties of bismuth sodium titanate ceramics. J. Appl. Phys. 105, 084112 (2009).CrossRefGoogle Scholar
Jiang, L., Wang, Z., Chen, Y., Chen, P., Luo, L., and Chen, H.: Bright up-conversion emission of Er3+-doped lead-free ferroelectric Na0.5Bi0.5TiO3 single crystal. Mater. Lett. 210, 158 (2018).CrossRefGoogle Scholar
Wang, S., Zhou, H., Wang, X., and Pan, A.: Up-conversion luminescence and optical temperature-sensing properties of Er3+-doped perovskite Na0.5Bi0.5TiO3 nanocrystals. J. Phys. Chem. Solids 98, 28 (2016).CrossRefGoogle Scholar
Jo, W., Daniels, J., Damjanovic, D., Kleemann, W., and Roedel, J.: Two-stage processes of electrically induced-ferroelectric to relaxor transition in 0.94(Bi1/2Na1/2)TiO3-0.06BaTiO3. Appl. Phys. Lett. 102, 192903 (2013).CrossRefGoogle Scholar
Takenaka, T., Maruyama, K.I., and Sakata, K.: (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics. Jpn. J. Appl. Phys. 30, 2236 (1991).CrossRefGoogle Scholar
Zhang, X., Jiang, G., Guo, F., Liu, D., and Cao, W.: Mn doping effects on electric properties of 0.93(Bi0.5Na0.5)TiO3-0.07Ba(Ti0.945Zr0.055)O3 ceramics. J. Am. Ceram. Soc. 101, 2996 (2018).CrossRefGoogle Scholar
Zuo, R., Ye, C., Fang, X., and Li, J.: Tantalum doped 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 piezoelectric ceramics. J. Eur. Ceram. Soc. 28, 871 (2008).CrossRefGoogle Scholar
Li, H.D., Feng, C.D., and Yao, W.L.: Some effects of different additives on dielectric and piezoelectric properties of (Bi1/2Na1/2)TiO3–BaTiO3 morphotropic-phase-boundary composition. Mater. Lett. 58, 1194 (2004).CrossRefGoogle Scholar
Li, L., Zhu, M., Zhou, K., Wei, Q., Zheng, M., and Hou, Y.: Delayed thermal depolarization of Bi0.5Na0.5TiO3-BaTiO3 by doping acceptor Zn2+ with large ionic polarizability. J. Appl. Phys. 122, 204104 (2017).CrossRefGoogle Scholar
Prasertpalichat, S., Schmidt, W., and Cann, D.P.: Effects of A-site nonstoichiometry on oxide ion conduction in 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 ceramics. J. Adv. Dielectrics 06, 1650012 (2016).CrossRefGoogle Scholar
Seo, I.T., Steiner, S., and Frömling, T.: The effect of A site non-stoichiometry on 0.94(NayBix)TiO3-0.06BaTiO3. J. Eur. Ceram. Soc. 37, 1429 (2016).CrossRefGoogle Scholar
Zhang, J., Pan, Z., Guo, F.F., Liu, W.C., Ning, H., Chen, Y.B., Lu, M.H., Yang, B., Chen, J., and Zhang, S.T.: Semiconductor/relaxor 0–3 type composites without thermal depolarization in Bi0.5Na0.5TiO3-based lead-free piezoceramics. Nat. Commun. 6, 6615 (2015).CrossRefGoogle Scholar
Zang, J., Jo, W., and Rodel, J.: Quenching-induced circumvention of integrated aging effect of relaxor lead lanthanum zirconate titanate and (Bi1/2Na1/2)TiO3-BaTiO3. Appl. Phys. Lett. 102, 241 (2013).CrossRefGoogle Scholar
Muramatsu, H., Nagata, H., and Takenaka, T.: Quenching effects for piezoelectric properties on lead-free (Bi1/2Na1/2)TiO3 ceramics. Jpn. J. Appl. Phys. 55, 10TB07 (2016).CrossRefGoogle Scholar
Miura, T., Nagata, H., and Takenaka, T.: Quenching effects on piezoelectric properties and depolarization temperatures of (Bi0.5Na0.5)TiO3-based solid solution systems. Jpn. J. Appl. Phys. 56, 10PD05 (2017).CrossRefGoogle Scholar
Zhang, J., Wang, R.X., Li, L., Wu, J.Y., Cui, Y.S., Gu, Z.B., Zhang, H., Zhu, M.W., Zhang, S.T., and Yang, B.: Highly enhanced thermal stability in quenched Na0.5Bi0.5TiO3-based lead-free piezoceramics. J. Eur. Ceram. Soc. 39, 4705 (2019).CrossRefGoogle Scholar
Li, Z.T., Liu, H., Cheng, H., Xu, T.Z., Zhang, M.H., Yin, J., Li, J.F., Wang, K., and Chen, J.: Enhanced temperature stability and defect mechanism of BNT-based lead-free piezoceramics investigated by a quenching process. Adv. Electron. Mater. 5, 1800756 (2019).CrossRefGoogle Scholar
Chen, P.Y., Chen, C.S., Tu, C.S., and Chang, T.L.: Large E-field induced strain and polar evolution in lead-free Zr-doped 92.5%(Bi0.5Na0.5)TiO3–7.5%BaTiO3 ceramics. J. Eur. Ceram. Soc. 34, 4223 (2014).CrossRefGoogle Scholar
Arlt, G. and Neumann, H.: Internal bias in ferroelectric ceramics: Origin and time dependence. Ferroelectrics 87, 109 (1988).CrossRefGoogle Scholar
Kang, H.B., Chang, J., Koh, K., Lin, L., and Cho, Y.S.: High quality Mn-doped (Na,K)NbO3 nanofibers for flexible piezoelectric nanogenerators. ACS Appl. Mater. Interfaces. 6, 10576 (2014).CrossRefGoogle ScholarPubMed
Qiao, X.S., Chen, X.M., Lian, H.L., Zhou, J.P., and Liu, P.: Dielectric, ferroelectric, piezoelectric properties and impedance analysis of nonstoichiometric (Bi0.5Na0.5)0.94+xBa0.06TiO3 ceramics. J. Eur. Ceram. Soc. 36, 3995 (2016).CrossRefGoogle Scholar
Steiner, S., Seo, I.T., Ren, P., Li, M., Keeble, D.J., and Frömling, T.: The effect of Fe-acceptor doping on the electrical properties of Na1/2Bi1/2TiO3 and 0.94(Na1/2Bi1/2)TiO3-0.06 BaTiO3. J. Am. Ceram. Soc. 102, 5295 (2019).CrossRefGoogle Scholar
Peng, Z., Chen, Q., Liu, D., Wang, Y., Xiao, D., and Zhu, J.: Evolution of microstructure and dielectric properties of (LiCe)-doped Na0.5Bi2.5Nb2O9 Aurivillius type ceramics. Curr. Appl. Phys. 13, 1183 (2013).CrossRefGoogle Scholar
Lalitha, K.V., Koruza, J., and Roedel, J.: Propensity for spontaneous relaxor-ferroelectric transition in quenched (Na1/2Bi1/2)TiO3-BaTiO3 compositions. Appl. Phys. Lett. 113, 252902 (2018).Google Scholar
Steinsvik, S., Bugge, R., Gjnnes, J., Taft, J., and Norby, T.: The defect structure of SrTi1−xFexO3−y (x = 0 0.8) investigated by electrical conductivity measurements and electron energy loss spectroscopy (EELS). J. Phys. Chem. Solids 58, 969 (1997).CrossRefGoogle Scholar
Chen, C., Zhang, H., Deng, H., and Huang, T.: Electric field and temperature-induced phase transition in Mn-doped Na1/2Bi1/2TiO3-5.0 at.%BaTiO3 single crystals investigated by micro-Raman scattering. Appl. Phys. Lett. 104, 2236 (2014).Google Scholar
Eerd, W.V., Damjanovic, D., Klein, N., Setter, N., and Trodahl, J.: Structural complexity of Na0.5Bi0.5TiO3-BaTiO3 as revealed by Raman spectroscopy. Phys. Rev. B 82, 104111 (2010).Google Scholar
Kreisel, J., Glazer, A.M., Bouvier, P., and Lucazeau, G.: High-pressure Raman study of a relaxor ferroelectric: The Na0.5Bi0.5TiO3 perovskite. Phys. Rev. B 63, 174106 (2001).CrossRefGoogle Scholar
Zou, K., Dong, G., Liu, J., Xu, B., and Wang, D.: Effects of calcination temperature and Li+ ions doping on structure and upconversion luminescence properties of TiO2:Ho3+-Yb3+ nanocrystals. Mater. Sci. Technol. 35, 483 (2019).CrossRefGoogle Scholar
Lin, J., Lu, Q., Xu, J., Wu, X., , C, Lin, T, Chen, C, and Luo, L: Outstanding optical temperature sensitivity and dual-mode temperature-dependent photoluminescence in Ho3+-doped (K, Na)NbO3-SrTiO3 transparent ceramics. J. Am. Ceram. Soc. 102, 4710 (2019).CrossRefGoogle Scholar
Wu, X., Lin, J., Chen, P., Liu, C., and Zheng, X.: Ho3+ doped (K, Na)NbO3-based multifunctional transparent ceramics with superior optical temperature sensing performance. J. Am. Ceram. Soc. 102, 1249 (2018).CrossRefGoogle Scholar
Choi, T., Lee, S., Choi, Y.J., Kiryukhin, V., and Cheong, S.W.: Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science 324, 63 (2009).CrossRefGoogle ScholarPubMed
Zhang, Q., Zhang, Y., Sun, H., Geng, W., Wang, X., Hao, X., and An, S.: Tunable luminescence contrast of Na0.5Bi4.5Ti4O15:Re (Re = Sm, Pr, Er) photochromics by controlling the excitation energy of luminescent centers. ACS Appl. Mater. Interfaces 8, 34581 (2016).CrossRefGoogle ScholarPubMed