Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-01T04:14:52.243Z Has data issue: false hasContentIssue false

Effect of pressure on crystal structure and charge transport properties of 2,6-diphenylanthracene

Published online by Cambridge University Press:  01 December 2016

Kadali Chaitanya
Affiliation:
Key Laboratory of Soft Chemistry and Functional Materials of MOE, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
Xue-Hai Ju*
Affiliation:
Key Laboratory of Soft Chemistry and Functional Materials of MOE, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The influence of hydrostatic compression on the charge transport properties of an excellent 2,6-diphenylanthracene (2,6-DPA) semiconducting single crystal was investigated up to 10 GPa by performing density-functional calculations together with the tight binding approximation. In this pressure region the lattice constants a, b and c decrease by up to 0.948 Å (5.23%), 1.30 Å (17.26%), and 0.711 Å (11.34%), respectively, while the monoclinic angle β increases by 3.4°. The unit-cell volume decreases by increasing pressure, and the volume decreases by 30.5% at 10 GPa. In comparison, the C–C and C–H intermolecular distances within and between the herringbone layers reduced by 16–19% and 16–24%, respectively, in the same pressure ranges. The results indicate that under high pressure, the molecular planes of the crystal become more and more parallel to each other due to molecular rearrangement in the 2,6-DPA crystal. The band gap decreases with increasing pressure due to decreasing intermolecular separation between neighboring molecules. Finally, the results indicate an improvement of the hole mobility of 2,6-DPA single crystals under hydrostatic pressure.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Pope, M. and Kallman, H.: Electroluminescence in organic crystals. J. Chem. Phys. 38, 2042 (1963).Google Scholar
Wurthner, F.: Plastic transistors reach maturity for mass applications in microelectronics. Angew. Chem., Int. Ed. 40, 1037 (2001).Google Scholar
Coropceanu, V., Cornil, J., da Silva Filho, D.A., Olivier, Y., Silbey, R., and Bredas, J-L.: Charge transport in organic semiconductors. Chem. Rev. 107, 926 (2007).Google Scholar
Wang, L., Fine, D., Basu, D., and Dodabalapur, A.: Electric-field-dependent charge transport in organic thin-film transistors. J. Appl. Phys. 101, 054515 (2007).Google Scholar
Warta, W. and Karl, N.: Hot holes in naphthalene: High, electric-field-dependent mobilities. Phys. Rev. B: Condens. Matter Mater. Phys. 32, 1172 (1985).Google Scholar
Kepler, R.G. and Hoesterey, D.C.: High-field mobility in anthracene crystals. Phys. Rev. B: Condens. Matter Mater. Phys. 9, 2743 (1974).Google Scholar
Schein, L.B. and McGhie, A.R.: Electric field independent mobilities in molecular crystals. Chem. Phys. Lett. 62, 356 (1979).Google Scholar
Nakano, S. and Maruyama, Y.: Electric-field dependent electron mobility in anthracene single crystals. Solid State Commun. 35, 671 (1980).Google Scholar
Schein, L.B., Narang, R.S., Anderson, R.W., Meyer, K.E., and McGhie, A.R.: Electric-field-independent electron mobilities in anthracene. Chem. Phys. Lett. 100, 37 (1983).Google Scholar
Takeya, J., Kato, J., Hara, K., Yamagishi, M., Hirahara, R., Yamada, K., Nakazawa, Y., Ikehata, S., Tsukagoshi, K., Aoyagi, Y., Takenobu, T., and Iwasa, Y.: In-crystal and surface charge transport of electric-field-induced carriers in organic single-crystal semiconductors. Phys. Rev. Lett. 98, 196804 (2007).Google Scholar
Sancho-Garcia, J.C., Horowitz, G., Brédas, J-L., Cornil, J.: Effect of an external electric field on the charge transport parameters in organic molecular semiconductors. J. Chem. Phys. 119, 12563 (2003).CrossRefGoogle Scholar
Olivier, Y., Lemaur, V., Brédas, J-L., and Cornil, J.: Charge hopping in organic Semiconductors: Influence of molecular parameters on macroscopic mobilities in model one-dimensional stacks. J. Phys. Chem. A 110, 6356 (2006).Google Scholar
Hultell, M. and Stafström, S.: Polaron dynamics in highly ordered molecular crystals. Chem. Phys. Lett. 428, 446 (2006).Google Scholar
Kajiwara, T., Inokuchi, H., and Minomura, S.: Charge mobility of organic semiconductors under high pressure. Anthracene. Bull. Chem. Soc. Jpn. 3, 1055 (1967).CrossRefGoogle Scholar
Harada, Y., Maruyama, Y., Shirotani, I., and Inokuchi, H.: Electrical conductivity of organic semiconductors at high pressure. Bull. Chem. Soc. Jpn. 37, 1378 (1964).Google Scholar
Shirotani, A., Inokuchi, H., and Minomura, S.: Electrical conduction of organic semiconductors under high pressure. Bull. Chem. Soc. Jpn. 39, 386 (1966).Google Scholar
Rang, Z., Haraldsson, A., Kim, D.M., Ruden, P.P., Nathan, M.I., Chesterfield, R.J., and Frisbie, C.D.: Hydrostatic-pressure dependence of the photoconductivity of single-crystal pentacene and tetracene. Appl. Phys. Lett. 79, 2731 (2001).Google Scholar
Rang, Z., Nathan, M.I., Ruden, P.P., Podzorov, V., Gershenson, M.E., Newman, C.R., and Frisbie, C.D.: Hydrostatic pressure dependence of charge carrier transport in single-crystal rubrene devices. Appl. Phys. Lett. 86, 123501 (2005).Google Scholar
Rang, Z., Nathan, M.I., Ruden, P.P., Chesterfield, R., and Frisbie, C.D.: Hydrostatic-pressure dependence of organic thin-film transistor current versus voltage characteristics. Appl. Phys. Lett. 85, 5760 (2004).Google Scholar
Wang, L.J., Li, Q.K., and Shuai, Z.: Effects of pressure and temperature on the carrier transports in organic crystal: A first-principles study. J. Chem. Phys. 128, 194706 (2008).Google Scholar
Sakai, K., Okada, Y., Kitaoka, S., Tsurumi, J., Ohishi, Y., Fujiwara, A., Takimiya, K., and Takeya, J.: Anomalous pressure effect in heteroacene organic field-effect transistors. Phys. Rev. Lett. 110, 096603 (2013).Google Scholar
Okada, Y., Sakai, K., Uemura, T., Nakazawa, Y., and Takeya, J.: Charge transport and Hall effect in rubrene single-crystal transistors under high pressure. Phys. Rev. B: Condens. Matter Mater. Phys. 84, 245308 (2011).Google Scholar
Bauman, G.W., Parsons, S., Serwatowski, J., and Woźniak, K.: Effect of high pressure on the crystal structure and charge transport properties of the (2-fluoro-3-pyridyl)(4-Iodophenyl)borinic 8-oxyquinolinate complex. CrystEngComm 16, 10780 (2014).Google Scholar
Karl, N.: Charge carrier transport in organic semiconductors. Synth. Met. 133, 649 (2003).Google Scholar
Podzorov, V., Pudalov, V.M., and Gershenson, M.E.: Field-effect transistors on rubrene single crystals with parylene gate insulator. Appl. Phys. Lett. 82, 1739 (2003).Google Scholar
Shirota, Y.: Photo- and electroactive amorphous molecular materials—Molecular design, syntheses, reactions, properties, and applications. J. Mater. Chem. 15, 7593 (2005).Google Scholar
Kreouzis, T., Poplavskyy, D., Tuladhar, S.M., Campoy-Quiles, M., Nelson, J., Campbell, A.J., and Bradley, D.D.C.: Temperature and field dependence of hole mobility in poly(9,9-dioctylfluorene). Phys. Rev. B: Condens. Matter Mater. Phys. 73, 235201 (2006).Google Scholar
Guo, X., Facchetti, A., and Marks, T.J.: Imide- and amide-functionalized polymer semiconductors. Chem. Rev. 114, 8943 (2014).Google Scholar
Cinar, M.E. and Ozturk, T.: Thienothiophenes, dithienothiophenes, and thienoacenes: Syntheses, oligomers, polymers, and properties. Chem. Rev. 115, 3036 (2015).Google Scholar
Meng, H., Sun, F., Goldfinger, M.B., Jaycox, G.D., Li, Z., Marshall, W.J., and Blackman, G.S.: High-performance: Stable organic thin-film field-effect transistors based on bis-5′-alkylthiophen-2′-yl-2,6-anthracene semiconductors. J. Am. Chem. Soc. 127, 2406 (2005).Google Scholar
Kukhta, I.V., Kukhta, I.N., Kukhta, N.A., Neyra, O.L., and Meza, E.: DFT study of the electronic structure of anthracene derivatives in their neutral, anion and cation forms. J. Phys. B: At., Mol. Opt. Phys. 41, 205701 (2008).Google Scholar
Deng, W.Q. and Goddard, W.A. III: Predictions of hole mobilities in oligoacene organic semiconductors from quantum mechanical calculations. J. Phys. Chem. B 108, 8614 (2004).Google Scholar
Ando, S., Nishida, J-I., Fujiwara, E., Tada, H., Inoue, Y., Tokito, S., and Yamashita, Y.: Novel p- and n-type organic semiconductors with an anthracene unit. Chem. Mater. 17, 1261 (2005).Google Scholar
Meng, H., Sun, F., Goldfinger, M.B., Gao, F., Londono, D.J., Marshal, W.J., Blackman, G.S., Dobbs, K.D., and Keys, D.E.: 2,6-Bis[2-(4-pentylphenyl)vinyl]anthracene: A stable and high charge mobility organic semiconductor with densely packed crystal structure. J. Am. Chem. Soc. 128, 9304 (2006).Google Scholar
Jiang, L., Hu, W., and Wei, Z.: High-performance organic single-crystal transistors and digital inverters of an anthracene derivative. Adv. Mater. 21, 3649 (2009).Google Scholar
Liu, J., Dong, H., Wang, Z., Ji, D., Cheng, C., Geng, H., Zhang, H., Zhen, Y., Jiang, L., Fu, H., Bo, Z., Chen, W., Shuai, Z., and Hu, W.: Thin film field-effect transistors of 2,6-diphenyl anthracene (DPA). Chem. Commun. 51, 11777 (2015).Google Scholar
Liu, J., Zhang, H., Dong, H., Meng, L., Jiang, L., Jiang, L., Wang, Y., Yu, J., Sun, Y., Hu, W., and Heeger, A.J.: High mobility emissive organic semiconductor. Nat. Commun. 6, 10032 (2015).Google Scholar
Ueno, N.: Electronic structure of molecular solids: Bridge to the electrical conduction. In Physics of Organic Semiconductors, 2nd ed., Brütting, W. and Adachi, C. eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2012.Google Scholar
Elnahwy, S.A., El Hamamsy, M., and Damask, A.C.: Calculation of the effects of pressure on the band structure, drift, and Hall mobilities of an excess electron and an excess hole in anthracene. Phys. Rev. B: Condens. Matter Mater. Phys. 19, 1108 (1979).Google Scholar
Marciniak, A., Despré, V., Barillot, T., Rouzée, A., Galbraith, M.C.E., Klei, J., Yang, C.H., Smeenk, C.T.L., Loriot, V., Nagaprasad Reddy, S., Tielens, A.G.G.M., Mahapatra, S., Kuleff, A.I., Vrakking, M.J.J., and Lépine, F.: XUV excitation followed by ultrafast non-adiabatic relaxation in PAH molecules as a femto-astrochemistry experiment. Nat. Commun. 6, 7909 (2015).Google Scholar
Vanderbilt, D.: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B: Condens. Matter Mater. Phys. 41, 7892 (1990).Google Scholar
Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, M.I.J., Refson, K., and Payne, M.C.: First principles methods using CASTEP. Z. Kristallogr. 220, 567 (2005).Google Scholar
Accelrys Inc.: Materials Studio, 5.5 V (Accelrys Inc., San Diego, CA, 2008).Google Scholar
Kresse, G. and Furthmuller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B: Condens. Matter Mater. Phys. 54, 11169 (1996).Google Scholar
Fischer, T.H. and Almlof, J.: General methods for geometry and wave function optimization. J. Phys. Chem. 96, 9768 (1992).Google Scholar
Perdew, J.P., Burke, K., and Ernzerhof, K.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
Sancho-Garcia, J.C., Perez-Jimenez, A.J., Olivier, Y., and Cornil, J.: Molecular packing and charge transport parameters in crystalline organic semiconductors from first-principles calculations. Phys. Chem. Chem. Phys. 12, 9381 (2010).Google Scholar
Perger, W.F.: Calculation of band gaps in molecular crystals using hybrid functional theory. Chem. Phys. Lett. 368, 319 (2003).Google Scholar
Troisi, A. and Orlandi, G.: The hole transfer in DNA: Calculation of electron coupling between close bases. Chem. Phys. Lett. 344, 509 (2001).Google Scholar
Nan, G. and Li, Z.: Phase dependence of hole mobilities in dibenzo-tetrathiafulvalene crystal: A first-principles study. Org. Electron. 13, 1229 (2012).Google Scholar
Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A. Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J.: Gaussian 09, Revision A.02 (Gaussian, Inc., Wallingford, CT, 2009).Google Scholar
Perdew, J.P. and Wang, Y.: Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B: Condens. Matter Mater. Phys. 45, 13244 (1992).Google Scholar
Goodwin, A.L.: Organic crystals: Packing down. Nat. Mater. 9, 7 (2010).Google Scholar
Aroyo, M.I., Kirov, A., Capillas, C., Perez-Mato, J.M., and Wondratschek, H.: Bilbao crystallographic server. II. Representations of crystallographic point groups and space groups. Acta Crystallogr., Sect. A: Found. Crystallogr. 62, 115 (2006).Google Scholar
Huang, Q.W., Zhang, J., Berlie, A., Qin, Z.X., Zhao, X.M., Zhang, J.B., Tang, L-Y., Liu, J., Zhang, C., Zhong, G.H., Lin, H.Q., and Chen, X.J.: Structural and vibrational properties of phenanthrene under pressure. J. Chem. Phys. 139, 104302 (2013).Google Scholar
Oehzelt, M., Heimel, G., Resel, R., Puschnig, P., Hummer, K., Draxl, C.A., Takemura, K., and Nakayama, A.: High pressure x-ray study on anthracene. J. Chem. Phys. 119, 1078 (2003).Google Scholar
Oehzelt, M. and Resel, R.: High-pressure structural properties of anthracene up to 10 GPa. Phys. Rev. B: Condens. Matter Mater. Phys. 66, 174104 (2002).Google Scholar
McKinnon, J.J., Jayatilaka, D., and Spackman, M.A.: Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem. Commun., 37, 3814 (2007).Google Scholar
Gershenson, M.E., Podzorov, V., and Morpurgo, A.F.: Colloquium: Electronic transport in single-crystal organic transistors. Rev. Mod. Phys. 78, 973 (2006).Google Scholar
Koller, G., Berkebile, S., Oehzelt, M., Puschnig, P., Draxl, C.A., Netzer, F.P., and Ramsey, M.G.: Intra- and intermolecular band dispersion in an organic crystal. Science 317, 351 (2007).Google Scholar
Ortmann, F., Hannewald, K., and Bechstedt, F.: Ab initio studies of structural, vibrational, and electronic properties of durene crystals and molecules. Phys. Rev. B: Condens. Matter Mater. Phys. 75, 195219 (2007).CrossRefGoogle Scholar
Troisi, A. and Orlandi, G.: Charge-transport regime of crystalline organic semiconductors: Diffusion limited by thermal off-diagonal electronic disorder. Phys. Rev. Lett. 96, 086601 (2006).Google Scholar
Hannewald, K., Stojanovic, V.M., Schellekens, J.M.T., Bobbert, P.A., Kresse, G., and Hafner, J.: Theory of polaron bandwidth narrowing in organic molecular crystals. Phys. Rev. B: Condens. Matter Mater. Phys. 69, 075211 (2004).Google Scholar
Cheng, Y.C. and Silbey, R.J.: A unified theory for charge-carrier transport in organic crystal. J. Chem. Phys. 128, 114713 (2008).Google Scholar
Valeev, E.F., Coropceanu, V., da Silva Filho, D.A., Salman, S., and Bredas, J-L.: Effect of electronic polarization on charge-transport parameters in molecular organic semiconductors. J. Am. Chem. Soc. 128, 9882 (2006).Google Scholar
Yanai, T., Tew, D.P., and Handy, N.C.: A new hybrid exchange–correlation functional using the coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393, 51 (2004).Google Scholar
Haddon, R.C., Siegrist, T., Fleming, R.M., Bridenbaugh, P.M., and Laudise, R.A.: Band structures of organic thin-film transistor materials. J. Mater. Chem. 5, 1719 (1995).Google Scholar
Huang, J.S. and Kertesz, M.: Validation of intermolecular transfer integral and bandwidth calculations for organic molecular materials. J. Chem. Phys. 122, 234707 (2005).Google Scholar
Duan, Y.A., Li, H.B., Geng, Y., Wu, Y., Wang, G.Y., and Su, Z.M.: Theoretical studies on the hole transport property of tetrathienoarene derivatives: The influence of the position of sulfur atom, substituent and π-conjugated core. Org. Electron. 15, 602 (2014).Google Scholar
de Wijs, G.A., Mattheus, C.C., de Groot, R.A., and Palstra, T.T.M.: Anisotropy of the mobility of pentacene from frustration. Synth. Met. 139, 109 (2003).Google Scholar
Supplementary material: File

Chaitanya and Ju supplementary material

Tables S1-S2 and Figures S1-S3

Download Chaitanya and Ju supplementary material(File)
File 1.4 MB