Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T00:34:12.892Z Has data issue: false hasContentIssue false

Effect of BaSnO3 on the microwave dielectric properties of Ba2Ti9O20

Published online by Cambridge University Press:  31 January 2011

Ki Hyun Yoon
Affiliation:
Department of Ceramic Engineering, Yonsei University, Seoul, 120–749, Korea
Jae Beom Kim
Affiliation:
Department of Ceramic Engineering, Yonsei University, Seoul, 120–749, Korea
Woo Sup Kim
Affiliation:
Department of Ceramic Engineering, Yonsei University, Seoul, 120–749, Korea
Eung Soo Kim
Affiliation:
Department of Material Engineering, Kyonggi University, Suwon, Korea
Get access

Abstract

The effect of BaSnO3 on the phase formation and the dielectric properties of Ba2Ti9O20 was investigated as a function of the amount of BaSnO3 in the temperature range of 20 °C to 80 °C at 7 GHz. In the reaction of 2BaCO3 + 9TiO2 → Ba2Ti9O20 + 2CO2↑, the batch with the addition of BaSnO3 enhanced the reactivity compared to the batch with the addition of SnO2. The enhancement of reactivity caused single phase Ba2Ti9O20 to form effectively with less amounts of BaSnO3. As the amount of BaSnO3 increased up to 0.03 mol, the unloaded Q increased due to an increase of the Ba2Ti9O20 phase; for further addition of BaSnO3 over 0.3 mol, the unloaded Q decreased due to the increase of rutile and BaTi4O9 phases. The dielectric constant increased with increasing BaSnO3. As single phase Ba2Ti9O20 was present in the specimen, the Q·ƒ0 value, the dielectric constant, and the TCF were approximately 37,900, 38.7, and 1.7 ppm/°C, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.O'Bryan, H. M., Thomson, J., and Plourde, J.K., J. Am. Ceram. Soc. 57 (10), 450 (1974).CrossRefGoogle Scholar
2.Wersing, W., Electronic Ceramics, edited by Steele, B. C. H. (Elsevier Appl. Sci., London, 1991), p. 67.Google Scholar
3.Plourde, J. K., Linn, D. F., O'Bryan, H. M. Jr., and Thomson, J. Jr., J. Am. Ceram. Soc. 58 (910), 418 (1975).CrossRefGoogle Scholar
4.Jonker, G. H. and Kwestroo, W., J. Am. Ceram. Soc. 41 (10), 390 (1958).CrossRefGoogle Scholar
5.Amin, A., Spears, M. A., and Kulwicki, B. M., J. Am. Ceram. Soc. 66 (10), 733 (1983),CrossRefGoogle Scholar
6.O'Bryan, H. M. and Thomson, J., J. Am. Ceram. Soc. 57 (12), 522 (1974).CrossRefGoogle Scholar
7.Jaakola, T., Uusimaki, U., and Leppavuori, S., Int. J. High Technol. 2, 195 (1980).CrossRefGoogle Scholar
8.O'Bryan, H. M. and Thomson, J., J. Am. Ceram. Soc. 66 (1), 66 (1983).CrossRefGoogle Scholar
9.Wu, J-M. and Wang, H-M., J. Am. Ceram. Soc. 71 (10), 869 (1988).CrossRefGoogle Scholar
10.Matsumoto, H., Tamura, H., and Wakino, K., Jpn. J. Appl. Phys. 30, 2347 (1991).CrossRefGoogle Scholar
11.Sun, J-S., Yu, J-J., You, J-C., and Wei, C-C., J. Mater. Sci. 28, 2163 (1993).CrossRefGoogle Scholar
12.Bao, M., Li, W., and Zhu, P., J. Mater. Sci. 28, 6617 (1993).CrossRefGoogle Scholar
13.Hakki, B. W. and Coleman, P.D., IRE Trans. Microwave Theory Tech. MTT-8, 402 (1960).CrossRefGoogle Scholar
14.Budavari, S., The Merck Index, 11th ed. (Merck / Co., Inc., Rahway, NJ, 1989), p. 975.Google Scholar
15.Kirby, K. W. and Wechster, B. A., J. Am. Ceram. Soc. 74 (8), 1841 (1991).CrossRefGoogle Scholar
16.Yu, J., Zhao, H., Wang, J., and Xia, F., J. Am. Ceram. Soc. 77 (4), 10521056 (1994).CrossRefGoogle Scholar
17.O'Bryan, H. M. Jr., Thomson, J., and Plourde, J. K., Ber. Dt. Keram. Ge. 55, 348 (1978).Google Scholar
18.Mhaisalkar, S. G., Ready, D. W., and Akbar, S. A., J. Am. Ceram. Soc. 74 (8), 1894 (1991).CrossRefGoogle Scholar
19.Buchanan, R. C., Ceramic Materials for Electronics (Marcel Dekker Inc., New York, 1986), p. 75.Google Scholar
20.Tamura, H., Minai, K., and Wakino, K., Inst. Electronics Comm. Engrs. Japan CPM 78-50, 31 (1978).Google Scholar