Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-08T07:31:08.509Z Has data issue: false hasContentIssue false

Designing soft nanomaterials via the self assembly of functionalized icosahedral viral capsid nanoparticles

Published online by Cambridge University Press:  02 December 2014

Vidyalakshmi Chockalingam Muthukumar
Affiliation:
Department of Chemical and Biochemical Engineering, Rutgers The State University of New Jersey, Piscataway, New Jersey 08854, USA
Leebyn Chong
Affiliation:
Department of Chemical and Biochemical Engineering, Rutgers The State University of New Jersey, Piscataway, New Jersey 08854, USA
Meenakshi Dutt*
Affiliation:
Department of Chemical and Biochemical Engineering, Rutgers The State University of New Jersey, Piscataway, New Jersey 08854, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Through implicit solvent coarse-grained molecular dynamics simulations, we investigate the equilibrium morphologies resulting from the self-assembly of building blocks composed of anisotropically functionalized icosahedral viral capsid nanoparticles (NPs). We investigate the self-assembled aggregate morphologies for variations in the functional group chain length and solvent quality. We observe specific building block architectures to favor the formation of n-mers, chain- and network-like structures. Our work is in agreement with the earlier simulation studies on icosahedral gold nanocrystals that generate self-assembled chain-like structures. [G. Bilalbegovic, Comput. Mater. Sci.31, 181 (2004).] In addition, our results agree with those by Finn et al., who have shown small predominantly chain-like aggregates with mannose-decorated cowpea mosaic virus (CPMV) [K.S. Raja, Q. Wang, and M.G. Finn, ChemBioChem4, 1348–1351 (2003)] and small aggregates with oligonucleotide functionalization on the CPMV capsid. [E. Strable, J.E. Johnson, and M.G. Finn, Nano Lett.4, 1385–1389 (2004).] Visual inspection suggests that our results most likely span the low temperature limits explored by Finn et al. and show a good degree of agreement with the experimental results at an annealing temperature of 4 °C. [E. Strable, J.E. Johnson, and M.G. Finn, Nano Lett.4, 1385–1389 (2004).] Our investigations reveal the possibility of novel n-mer type aggregates that could be synthesized using icosahedral NPs with appropriate surface functionalization and solvent conditions.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Yaghi, O.M., O’Keeffe, M., Ockwig, N.W., Chae, H.K., Eddaoudi, M., and Kim, J.: Reticular synthesis and the design of new materials. Nature 423, 705714 (2003).CrossRefGoogle ScholarPubMed
Brust, M., Walker, M., Bethell, D., Schiffrin, D.J., and Whyman, R.: Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J. Chem. Soc., Chem. Commun. 7, 801802 (1994).CrossRefGoogle Scholar
Glotzer, S. and Solomon, M.J.: Anisotropy of building blocks and their assembly into complex structures. Nat. Mater. 6, 557562 (2007).CrossRefGoogle ScholarPubMed
Chane-Ching, J-Y., Cobo, F., Aubert, D., Harvey, H.G., Airiau, M., and Corma, A.: A general method for the synthesis of nanostructured large-surface-area materials through the self-assembly of functionalized nanoparticles. Chem. - Eur. J. 11, 979987 (2005).CrossRefGoogle ScholarPubMed
Boal, A.K., Ilhan, F., DeRouchey, J.E., Thurn-Albrecht, T., Russel, T.P., and Rotelllo, V.M.: Self-assembly of nanoparticles into structured spherical and network aggregates. Nature 404, 746748 (2000).CrossRefGoogle ScholarPubMed
Mahalingam, V., Onclin, S., Peter, M., Ravoo, B.J., Huskens, J., and Reinhoudt, D.N.: Directed self-assembly of functionalized silica nanoparticles on molecular printboards through multivalent supramolecular interactions. Langmuir 20, 1175611762 (2004).CrossRefGoogle ScholarPubMed
Mitchell, G.P., Mirkin, C.A., and Letsinger, R.L.: Programmed assembly of DNA functionalized quantum dots. J. Am. Chem. Soc. 121, 81228123 (1999).CrossRefGoogle Scholar
Daniel, M-C. and Astruc, D.: Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293346 (2004).CrossRefGoogle Scholar
Shenhar, R., Norsten, T.B., and Rotello, V.M.: Polymer-mediated nanoparticle assembly: Structural control and applications. Adv. Mater. 17, 657669 (2005).CrossRefGoogle Scholar
Auer, F., Scotti, M., Ulman, A., Jordan, R., Sellergren, B., Garno, J., and Liu, G-Y.: Nanocomposites by electrostatic interactions: 1. Impact of sublayer quality on the organization of functionalized nanoparticles on charged self-assembled layers. Langmuir 16, 75547557 (2000).CrossRefGoogle Scholar
Park, S.Y., Lytton-Jean, A.K.R., Lee, B., Weigand, S., Schatz, G.C., and Mirkin, C.A.: DNA-programmable nanoparticle crystallization. Nature 451, 553556 (2008).CrossRefGoogle ScholarPubMed
Boker, A., Lin, Y., Chiapperini, K., Horowitz, R., Thompson, M., Carreon, V., Xu, T., Abetz, C., Skaff, H., Dinsmore, A.D., Emrick, T., and Russell, T.P.: Hierarchical nanoparticle assemblies formed by decorating breath figures. Nat. Mater. 3, 302306 (2004).CrossRefGoogle ScholarPubMed
Liu, J. and Liu, Y.: Adenosine-dependent assembly of aptazyme-functionalized gold nanoparticles and its application as a colorimetric biosensor. Anal. Chem. 76, 16271632 (2004).CrossRefGoogle ScholarPubMed
Yee, C., Kataby, G., Ulman, A., Prozorov, T., White, H., King, A., Rafailovich, M., Sokolov, J., and Gedanken, A.: Self-assembled monolayers of alkanesulfonic and -phosphonic acids on amorphous iron oxide nanoparticles. Langmuir 15, 71117115 (1999).CrossRefGoogle Scholar
An, Y., Chen, M., Xue, Q., and Liu, W.: Preparation and self-assembly of carboxylic acid-functionalized silica. J. Colloid Interface Sci. 311, 507513 (2007).CrossRefGoogle ScholarPubMed
Slocik, J.M., Govorov, A.O., and Naik, R.R.: Plasmonic circular dichroism of peptide-functionalized gold nanoparticles. Nano Lett. 11, 701705 (2011).CrossRefGoogle ScholarPubMed
Polleux, J., Pinna, N., Antonietti, M., Hess, C., Wild, U., Schlogl, R., and Niederberger, M.: Ligand functionality as a versatile tool to control the assembly behavior of preformed titania nanocrystals. Chem. - Eur. J. 11, 35413551 (2005).CrossRefGoogle ScholarPubMed
Polleux, J., Pinna, N., Antonietti, M., and Niederberger, M.: Ligand-directed assembly of preformed titania nanocrystals into highly anisotropic nanostructures. Adv. Mater. 16, 436439 (2004).CrossRefGoogle Scholar
Lee, W-K., Cha, S-H., Kim, K-H., Kim, B-W., and Lee, J-C.: Shape-controlled synthesis of gold icosahedra and nanoplates using Pluronic P123 block copolymer and sodium chloride. J. Solid State Chem. 182, 32433248 (2009).CrossRefGoogle Scholar
Bilalbegovic, G.: Assemblies of gold icosahedra. Comput. Mater. Sci. 31, 181 (2004).CrossRefGoogle Scholar
Gutierrez-Sanchez, C., Pita, M., Vaz-Dominguez, C., Shleev, S., and De Lacey, A.L.: Gold nanoparticles as electronic bridges for laccase-based biocathodes. J. Am. Chem. Soc. 134, 1721217220 (2012).CrossRefGoogle ScholarPubMed
Wang, Y., Wei, G., Wen, F., Zhang, X., Zhang, W., and Shi, L.: Synthesis of gold nanoparticles stabilized with poly(N-isopropylacrylamide)-co-poly(4-vinyl pyridine) colloid and their application in responsive catalysis. J. Mol. Catal. A: Chem. 280, 16 (2008).CrossRefGoogle Scholar
Chang, C-C., Yang, K-H., Liu, Y-C., and Hsu, T-C.: New pathway to prepare gold nanoparticles and their applications in catalysis and surface-enhanced Raman scattering. Colloids Surf., B 93, 169173 (2012).CrossRefGoogle ScholarPubMed
Avram, M., Balan, C.M., Petrescu, I., Schiopu, V., Marculescu, C., and Avram, A.: Gold nanoparticle uptake by tumour cells of B16 mouse melanoma. Plasmonics 7, 717724 (2012).CrossRefGoogle Scholar
Oh, J-H. and Lee, J-S.: Salt concentration-induced dehybridisation of DNA-gold nanoparticle conjugate assemblies for diagnostic applications. Chem. Commun. 46, 63826384 (2010).CrossRefGoogle ScholarPubMed
Strable, E., Johnson, J.E., and Finn, M.G.: Natural nanochemical building blocks: Icosahedral virus particles organized by attached oligonucleotides. Nano Lett. 4, 13851389 (2004).CrossRefGoogle Scholar
Fan, J.A., He, Y., Bao, K., Wu, C., Bao, J., Schade, N.B., Manoharan, V.N., Shvets, G., Nordlander, P., Liu, D.R., and Capasso, F.: DNA-enabled self-assembly of plasmonic nanoclusters. Nano Lett. 11, 48594864 (2011).CrossRefGoogle ScholarPubMed
Pokorski, J.K., Breitenkamp, K., Liepold, L.O., Qazi, S., and Finn, M.G.: Functional virus-based polymer-protein nanoparticles by atom transfer radical polymerization. J. Am. Chem. Soc. 133, 92429245 (2011).CrossRefGoogle ScholarPubMed
Raja, K.S., Wang, Q., and Finn, M.G.: Icosahedral virus particles as polyvalent carbohydrate display platforms. ChemBioChem 4, 13481351 (2003).CrossRefGoogle ScholarPubMed
Flynn, C.E., Lee, S-W., Peelle, B.R., and Belcher, A.M.: Viruses as vehicles for growth, organization and assembly of materials. Acta Mater. 51, 58675880 (2003).CrossRefGoogle Scholar
Schlick, T.L., Ding, Z., Kovacs, E.W., and Francis, M.B.: Dual-surface modification of the tobacco mosaic virus. J. Am. Chem. Soc. 127, 37183723 (2005).CrossRefGoogle ScholarPubMed
Akcora, P., Liu, H., Kumar, S.K., Moll, J., Li, Y., Benicewiz, B.C., Schadler, L.S., Acehan, D., Panagiotopoulos, A.Z., Pryamitsyn, V., Ganesan, V., Ilavsky, J., Thiyagarajan, P., Colby, R.H., and Douglas, J.F.: Anisotropic self-assembly of spherical polymer-grafted nanoparticles. Nat. Mater. 8, 354359 (2009).CrossRefGoogle ScholarPubMed
Martin, T.B., Seifpour, A., and Jayaraman, A.: Assembly of copolymer functionalized nanoparticles: A Monte Carlo simulation study. Soft Matter 7, 59525964 (2011).CrossRefGoogle Scholar
Zhang, Z., Horsch, M.A., Lamm, M.H., and Glotzer, S.C.: Tethered nano building blocks: Toward a conceptual framework for nanoparticle self-assembly. Nano Lett. 3, 13411346 (2003).CrossRefGoogle Scholar
Glotzer, S.C., Horsch, M.A., Iacovella, C.R., Zhang, Z., Chan, E.R., and Zhang, X.: Self-assembly of anisotropic tethered nanoparticle shape amphiphiles. Curr. Opin. Colloid Interface Sci. 10, 287295 (2005).CrossRefGoogle Scholar
Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 119 (2005). http://lammps.sandia.gov.CrossRefGoogle Scholar
Tuckerman, M., Berne, B.J., and Martyna, G.J.: Reversible multiple time scale molecular dynamics. J. Chem. Phys. 97, 19902001 (1992).CrossRefGoogle Scholar
Ivanovska, I.L., de Pablo, P.J., Ibarra, B., Sgalari, G., MacKintosh, F.C., Carrascosa, J.L., Schmidt, C.F., and Wuite, G.J.L.: Bacteriophage capsids: Tough nanoshells with complex elastic properties. Proc. Natl. Acad. Sci. U.S.A. 101, 76007605 (2008).CrossRefGoogle Scholar
Carrillo-Tripp, M., Shepherd, C.M., Borelli, I.A., Venkataraman, S., Lander, G., Natarajan, P., Johnson, J.E., Brooks, C.L. III, and Reddy, V.S.: VIPERdb2: An enhanced and web API enabled relational database for structural virology. Nucleic Acids Res. 37, D436D442 (2009).CrossRefGoogle ScholarPubMed
Frenkel, D. and Smit, B.: Understanding Molecular Simulation from Algorithms to Applications, 2nd ed.; Academic Press, San Diego, California, 2002.Google Scholar
Kremer, K. and Grest, G.S.: Dynamics of entangled linear polymer melts: A molecular dynamics simulation. J. Chem. Phys. 92, 50575086 (1990).CrossRefGoogle Scholar
Schneider, T. and Stoll, E.: Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions. Phys. Rev. B 17, 13021322 (1978).CrossRefGoogle Scholar
Dunweg, B. and Paul, W.: Brownian dynamics simulations without Gaussian random numbers. Int. J. Mod. Phys. C 2, 817827 (1991).CrossRefGoogle Scholar
Caston, J.R., Trus, B.L., Booy, F.P., Wickner, R.B., Wall, J.S., and Steven, A.C.: Structure of L-A virus: A specialized compartment for the transcription and replication of double-stranded RNA. J. Cell Biol. 138, 975985 (1997).CrossRefGoogle Scholar
Manzenrieder, F., Luxenhofer, R., Retzlaff, M., Jordan, R., and Finn, M.G.: Stabilization of virus-like particles with poly(2-oxazoline)s. Angew. Chem., Int. Ed. 50, 26012605 (2011).CrossRefGoogle ScholarPubMed
Raja, K.S., Wang, Q., Gonzalez, M.J., Manchester, M., Johnson, J.E., and Finn, M.G.: Hybrid virus-polymer materials. 1. Synthesis and properties of PEG-decorated cowpea mosaic virus. Biomacromolecules 4, 472476 (2003).CrossRefGoogle ScholarPubMed
Ali, I., Marenduzzo, D., and Yeomans, J.M.: Ejection dynamics of polymeric chains from viral capsids: Effect of solvent quality. Biophys. J. 94, 41594164 (2008).CrossRefGoogle ScholarPubMed
Supplementary material: File

Supplementary Material

Supplementary information supplied by authors.

Download Supplementary Material(File)
File 1 MB