Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T15:14:19.017Z Has data issue: false hasContentIssue false

Combustion synthesis of metal carbides: Part II. Numerical simulation and comparison with experimental data

Published online by Cambridge University Press:  03 March 2011

A.M. Locci
Affiliation:
Dipartimento di Ingegneria Chimica e Materiali, Centro Studi sulle Reazioni Autopropaganti (CESRA), Unità di Ricerca del Consorzio Interuniversitario Nazionale di Scienza e Tecnologia dei Materiali (INSTM), Università degli Studi di Cagliari, Piazza d’Armi, 09123 Cagliari, Italy
A. Cincotti*
Affiliation:
Dipartimento di Ingegneria Chimica e Materiali, Centro Studi sulle Reazioni Autopropaganti (CESRA), Unità di Ricerca del Consorzio Interuniversitario Nazionale di Scienza e Tecnologia dei Materiali (INSTM), Università degli Studi di Cagliari, Piazza d’Armi, 09123 Cagliari, Italy
F. Delogu
Affiliation:
Dipartimento di Ingegneria Chimica e Materiali, Centro Studi sulle Reazioni Autopropaganti (CESRA), Unità di Ricerca del Consorzio Interuniversitario Nazionale di Scienza e Tecnologia dei Materiali (INSTM), Università degli Studi di Cagliari, Piazza d’Armi, 09123 Cagliari, Italy
R. Orrù
Affiliation:
Dipartimento di Ingegneria Chimica e Materiali, Centro Studi sulle Reazioni Autopropaganti (CESRA), Unità di Ricerca del Consorzio Interuniversitario Nazionale di Scienza e Tecnologia dei Materiali (INSTM), Università degli Studi di Cagliari, Piazza d’Armi, 09123 Cagliari, Italy
G. Cao*
Affiliation:
Dipartimento di Ingegneria Chimica e Materiali, Centro Studi sulle Reazioni Autopropaganti (CESRA), Unità di Ricerca del Consorzio Interuniversitario Nazionale di Scienza e Tecnologia dei Materiali (INSTM), Università degli Studi di Cagliari, Piazza d’Armi, 09123 Cagliari, Italy, and CRS4, Parco Scientifico e Tecnologico, POLARIS, Edificio 1, 09010 Pula (CA), Italy
*
a)Address all correspondence to these authors. e-mail: [email protected]
b)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

Based on the general theoretical model proposed in Part I of this work [J. Mater. Res. 20, 1257 (2005)], a series of numerical simulations related to the self-propagating high-temperature synthesis in the Ti–C system is presented. A detailed and quantitative description of the various physical and chemical processes that take place during combustion synthesis processes is provided in Part II of this work. In particular, the proposed mathematical description of the system has been discussed by highlighting the relation between system macroscopic behavior obtained experimentally with the modeled phenomena taking place at the microscopic scale. Model reliability is tested by comparison with suitable experimental data being nucleation parameters adopted for the fitting procedure. The complex picture emerging as a result of the model sophistication indicates that the rate of conversion is essentially determined by the rate of nucleation and growth. In addition, comparison between model results and experimental data seems to confirm the occurrence of heterogeneous nucleation in product crystallization.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Varma, A., Rogachev, A.S., Mukasyan, A.S. and Hwang, S.: Combustion synthesis of advanced materials: Principles and applications. Adv. Chem. Eng. 24, 79 (1998).CrossRefGoogle Scholar
2.Moore, J.J. and Feng, H.J.: Combustion synthesis of advanced materials: Part I. Reaction parameters. Prog. Mater. Sci. 39, 243 (1995).CrossRefGoogle Scholar
3.Moore, J.J. and Feng, H.J.: Combustion synthesis of advanced materials: Part II. Classification, application and modeling. Prog. Mater. Sci. 39, 275 (1995).CrossRefGoogle Scholar
4.Locci, A.M., Cincotti, A., Delogu, F., Orrù, R. and Cao, G.: Combustion synthesis of metal carbides: Part I. Model development. J. Mater. Res. 20, 1257 (2005).CrossRefGoogle Scholar
5.Kanury, A.M.: A kinetic model for metal + nonmetal reactions. Metall. Trans. 23A, 2349 (1992).CrossRefGoogle Scholar
6.Bhattacharya, A.K.: Temperature enthalpy approach to the modeling of self-propagating combustion synthesis of materials. J. Mater. Sci. 27, 3050 (1992).CrossRefGoogle Scholar
7.Nekrasov, E.A., Maksimov, Y.M. and Aldushin, A.P.: Mathematical model of combustion of a titanium-carbon system. Combustion, Explosion, and Shock Waves 17(5), 513 (1981).CrossRefGoogle Scholar
8.Makino, A.: Fundamental aspects of the heterogeneous flame in the self-propagating high-temperature synthesis (SHS) process. Prog. Energy Combust. Sci. 27(1), 1 (2001).CrossRefGoogle Scholar
9.Yukhvid, V.I., Makladov, S.V., Zhirkov, P.V., Gorshkov, V.A., Timokhin, N.I. and Dovzhenko, A.Y.: Combustion synthesis and structure formation in a model Cr–CrO3 self-propagating high-temperature synthesis system. J. Mater. Sci. 32, 1915 (1997).CrossRefGoogle Scholar
10.Zhang, Y. and Stangle, G.C.: A micromechanistic model of the combustion synthesis process: Part I. Theoretical development. J. Mater. Res. 9, 1994 (1994).Google Scholar
11.Zhang, Y. and Stangle, G.C.: A micromechanistic model of the combustion synthesis process: Part II. Numerical simulation. J. Mater. Res. 9, 2605 (1994).CrossRefGoogle Scholar
12.Zhang, Y. and Stangle, G.C.: A micromechanistic model of microstructure development during the combustion synthesis process. J. Mater. Res. 10, 962 (1995).CrossRefGoogle Scholar
13.Barin, I.: Thermochemical Data of Pure Substances (VCH, New York, NY, 1993).Google Scholar
14.Geiger, G.H. and Poirer, D.R.: Transport Phenomena in Metallurgy (Addison-Wesley, Menlo Park, CA, 1973).Google Scholar
15.Viswanath, D.S. and Mathur, B.C.: Thermal conductivity of liquid metals and alloys. Metall. Trans. 3A, 1769 (1972).CrossRefGoogle Scholar
16.CRC Handbook of Chemistry and Physics, 80th ed., (CRC Press, Boca Raton, FL, 2000).Google Scholar
17.IIT Research Institute, Handbook of Thermophysical Properties of Solid Materials (Macmillan, New York, NY, 1961).Google Scholar
18.Korshunov, I.G., Zinov’ev, V.E., Gel’d, P.V., Chernyaev, V.S., Borukhovich, A.S. and Shveikin, G.P.: Thermal diffusivity and thermal conductivity of titanium and zirconium carbides at high temperature. High Temperature 11, 803 (1973).Google Scholar
19.CRC Materials Science and Engineering Handbook, 3rd ed. (CRC Press, Boca Raton, FL, 2001).Google Scholar
20.Reid, R.C., Prausnitz, J.M. and Poling, B.E.: The Properties of Gases and Liquids, 4th ed., (McGraw-Hill, Singapore, 1988).Google Scholar
21.Sala, A.: Radiant Properties of Materials: Tables of Radiant Values for Black Body and Real Materials (Elsevier, New York, NY, 1986).Google Scholar
22.Compounds Handbook of High Temperature Properties, Production, Applications, edited by Kosolapova, T.Ya. (Hemisphere, New York, NY, 1990).Google Scholar
23.Hulburt, H.M. and Katz, S.: Some problem in particle technology: A statistical mechanical formulation. Chem. Eng. Sci. 19, 555 (1964).CrossRefGoogle Scholar
24.Dirksen, J.A. and Ring, T.A.: Fundamental of crystallization: Kinetic effects on particle size distributions and morphology. Chem. Eng. Sci. 46, 2389 (1991).CrossRefGoogle Scholar
25.Nishizawa, T., Ohnuma, I. and Ishida, K.: Correlation between interfacial energy and phase diagram in ceramic–metal systems. J. Phase Equilib. 22, 269 (2000).CrossRefGoogle Scholar
26.Cincotti, A., Licheri, R., Locci, A.M., Orrù, R. and Cao, G.: A review on combustion synthesis of novel materials: Recent experimental and modeling results. J. Chem. Technol. Biot. 78, 122 (2003).CrossRefGoogle Scholar
27.Lutterotti, L. and Scardi, P.: Simultaneous structure and size-strain refinement by the Rietveld method. J. Appl. Crystallogr. 23(4), 246 (1990).CrossRefGoogle Scholar
28.Vrel, D.L., Lihrmann, J.M. and Petitet, J.P.: Synthesis of titanium carbide by self-propagating powder reactions. 1. Enthalpy of formation of TiC. J. Chem. Eng. Data 40, 280 (1995).CrossRefGoogle Scholar
29.Mukasyan, A.S., Rogachev, A.S. and Varma, A.: Mechanism of pulsating combustion during synthesis of advanced materials. AIChE J. 45, 2580 (1999).CrossRefGoogle Scholar
30.Kachelmyer, C.R., Varma, A., Rogachev, A.S. and Sytschev, A.E.: Influence of reaction mixture porosity on the effective kinetics of gasless combustion synthesis. Ind. Eng. Chem. Res. 37(6), 2246 (1998).CrossRefGoogle Scholar