Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T06:08:11.407Z Has data issue: false hasContentIssue false

Characterization of microstructures, mechanical properties, and oxidation behavior of coherent A2 + L21 Fe-Al-Ti

Published online by Cambridge University Press:  31 January 2011

Ronny Krein*
Affiliation:
Max-Planck-Institut für Eisenforschung GmbH, D-40237 Düsseldorf, Germany
Martin Palm*
Affiliation:
Max-Planck-Institut für Eisenforschung GmbH, D-40237 Düsseldorf, Germany
Martin Heilmaier
Affiliation:
Institute for Materials and Joining Technology, Otto-von-Guericke University Magdeburg, D-39104 Magdeburg, Germany
*
a) Address all correspondence to this author. e-mail: [email protected]
b) Currently with Salzgitter Mannesmann Forschung GmbH, D-47259 Duisburg, Germany.
Get access

Abstract

Two Fe-Al-Ti alloys with coherent αFe,Al (A2) + Fe2AlTi (L21) microstructures have been produced and the evolution of the microstructure with aging time has been studied by light optical and scanning electron microscopy and hardness measurements. The compressive flow strength, creep properties, brittle-to-ductile-transition temperatures (BDTT), and oxidation behavior of the alloys have been evaluated. The results show that the investigated alloys show good flow strength, high creep resistance, and good oxidation resistance. However, their BDDT is high compared to binary Fe-Al-based alloys and compared to other Fe-Al-Ti alloys no increase in creep resistance was achieved by generating coherent microstructures. The latter effect is due to the breakup of the coherent microstructures when the temperature varies because the compositions and consequently the volume fractions of the phases vary markedly depending on temperature.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Hardwick, D. and Wallwork, G.: Iron-aluminium alloys: A review of their feasibility as high-temperature materials. Rev. High- Temp. Mater. 4, 47 (1978).Google Scholar
2.Vedula, K.: FeAl and Fe3Al, in Intermetallic Compounds, Vol. 2, Practice, edited by Westbrook, J.H. and Fleischer, R.L. (John Wiley & Sons, Chichester, UK, 1995), p. 199.Google Scholar
3.McKamey, C.G.: Iron aluminides, in Physical Metallurgy and Processing of Intermetallic Compounds, edited by Stoloff, N.S. and Sikka, V.K. (Chapman Hall, New York, 1996), p. 351.CrossRefGoogle Scholar
4.Morris, D.G. and Morris, M.A.: Strengthening at intermediate temperatures in iron aluminides. Mater. Sci. Eng., A 239, 23 (1997).CrossRefGoogle Scholar
5.Morris, D.G.: Possibilities for high-temperature strengthening in iron aluminides. Intermetallics 6, 753 (1998).CrossRefGoogle Scholar
6.Palm, M., Krein, R., Milenkovic, S., Sauthoff, G., Risanti, D., Stallybrass, C., andSchneider, A.: Strengthening mechanisms for Fe-Al-based alloys with increased creep resistance at high temperatures, in Advanced Intermetallic-Based Alloys, edited by Wiezorek, J., Fu, C.L., Takeyama, M., Morris, D., and Clemens, H. (Mater. Res. Soc. Symp. Proc. 980, Warrendale PA, 2007), II0101.Google Scholar
7.Diehm, R.S. and Mikkola, D.E.: Effects of Mo and Ti additions on the high temperature compressive properties of iron aluminides near Fe3Al, in High-Temperature Ordered Intermetallic Alloys II, edited by Stoloff, N.S., Koch, C.C., Liu, C.T., and Izumi, O. (Mater. Res. Soc. Symp. Proc. 81, Pittsburgh, PA, 1987), p. 329.Google Scholar
8.Gorzel, A., Palm, M., andSauthoff, G.: Constitution-based alloy selection for the screening of intermetallic Ti-Al-Fe alloys. Z. Metallkd. 90, 64 (1999).Google Scholar
9.Zhu, S-M., Sakamoto, K., Tamura, M., andIwasaki, K.: A comparative study of the high temperature deformation behavior of Fe-25Al and Fe-25Al-10Ti alloys. Scr. Mater. 42, 905 (2000).CrossRefGoogle Scholar
10.Zhu, S-M., Sakamoto, K., Tamura, M., andIwasaki, K.: Effects of titanium addition on the microstructure and mechanical behavior of iron aluminide Fe3Al. Mater. Trans. Jap. Inst. Met. 42, 484 (2001).CrossRefGoogle Scholar
11.Prakash, U. and Sauthoff, G.: Structure and properties of Fe-Al-Ti intermetallic alloys. Intermetallics 9, 107 (2001).CrossRefGoogle Scholar
12.Stein, F., Schneider, A., andFrommeyer, G.: Flow stress anomaly and order-disorder transitions in Fe3Al-based Fe-Al-Ti-X alloys with X = V, Cr, Nb, or Mo. Intermetallics 11, 71 (2003).CrossRefGoogle Scholar
13.Palm, M. and Sauthoff, G.: Deformation behavior and oxidation resistance of single-phase and two-phase L21-ordered Fe-Al-Ti alloys. Intermetallics 12, 1345 (2004).CrossRefGoogle Scholar
14.Dobes, F., Kratochvil, P., andMilicka, K.: Creep of cast Fe-36Al- 2Ti alloy. Intermetallics 14, 1199 (2006).CrossRefGoogle Scholar
15.Krein, R. and Palm, M.: The influence of Cr and B additions on the mechanical properties and oxidation behavior of L21-ordered Fe- Al-Ti-based alloys at high temperatures. Acta Mater. 56, 2400 (2008).CrossRefGoogle Scholar
16.Fortnum, R.T. and Mikkola, D.E.: Effects on molybdenum, titanium and silicon additions on the D03 B2 transition temperature for alloys near Fe3Al. Mater. Sci. Eng. 91, 223 (1987).CrossRefGoogle Scholar
17.Anthony, L. and Fultz, B.: Effects of early transition metal solutes on the D03-B2 critical temperature of Fe3Al. Acta Metall. Mater. 43, 3885 (1995).CrossRefGoogle Scholar
18.Ohnuma, I., Schn, C.G., Kainuma, R., Inden, G., andIshida, K.: Ordering and phase separation in the b.c.c. phase of the Fe-Al-Ti system. Acta Mater. 46, 2083 (1998).CrossRefGoogle Scholar
19.Palm, M. and Lacaze, J.: Assessment of the Al-Fe-Ti system. Intermetallics 14, 1291 (2006).CrossRefGoogle Scholar
20.Palm, M., Inden, G., andThomas, N.: The Fe-Al-Ti system. J. Phase Equilib. 16, 209 (1995).CrossRefGoogle Scholar
21.Palm, M.: Concepts derived from phase diagram studies for the strengthening of Fe-Al-based alloys. Intermetallics 13, 1286 (2005).CrossRefGoogle Scholar
22.Matsumura, S., Sonobe, A., Oki, K., andEguchi, T.: Ordering with phase separation in an Fe-Al-Si alloy, in Phase Transformations in Solids (Mater. Res. Soc. Symp. Proc. 21, 1984), p. 269.Google Scholar
23.Mendiratta, M.G., Ehlers, S.K., andLipsitt, H.A.: D03-B2-a phase relations in Fe-Al-Ti alloys. Metall. Trans. A 18, 509 (1987).CrossRefGoogle Scholar
24.Su, C.W., Chao, C.G., andLiu, T.F.: Formation of (B2 + D03) phases at a/2 100 anti-phase boundary in a Fe-23 at.%Al-8.5 at.%Ti alloy. Scr. Mater. 57, 917 (2007).CrossRefGoogle Scholar
25.Maebashi, T., Kozakai, T., andDoi, M.: Phase equilibria in ironrich Fe-Al-V ternary alloy system. Z. Metallkd. 95, 1005 (2004).CrossRefGoogle Scholar
26.Ackermann, H.: Experimental investigation and Monte-Carlo simulation of chemical ordering reactions in ternary cubic bodycentered Fe-Co-Al alloys. Doctoral thesis (Universität Dortmund, 1988), pp. 1193.Google Scholar
27.Jung, I. and Sauthoff, G.: Creep behavior of the intermetallic B2 phase (Ni, Fe)Al with strengthening soft precipitates. Z. Metallk. 80, 484 (1989).Google Scholar
28.Marcon, G. and Lay, S.: Miscibility gap of the Fe-Ni-Al partial system relative to the physical properties of alloys. II. Alloys with a high Fe content. Rev. Metall. CIT/SGM 96, 155 (1999).CrossRefGoogle Scholar
29.Stallybrass, C., Schneider, A., andSauthoff, G.: The strengthening effect of (Ni, Fe)Al precipitates on the mechanical properties at high temperatures of ferritic Fe-Al-Ni-Cr alloys. Intermetallics 13, 1263 (2005).CrossRefGoogle Scholar
30.Larson, D.J., Prosa, T.J., Kostrna, S.L.P., Ali, M., Kelly, T.F., Stallybrass, C., Schneider, A., Sauthoff, G., andDeges, J.: A correlative study of an iron-base superalloy using transmission electron microscopy and atom probe tomography. Microsc. Microanal. 12(Supp 2), 1748 (2006).CrossRefGoogle Scholar
31.Dimiduk, D.M., Mendiratta, M.G., Banerjee, D., andLipsitt, H.A.: A structural study of ordered precipitates in an ordered matrix within the Fe-Al-Nb system. Acta Metall. 36, 2947 (1988).CrossRefGoogle Scholar
32.Morris, D.G., Requejo, L.M., andMunoz-Morris, M.A.: A study of precipitation in D03ordered Fe-Al-Nb alloy. Intermetallics 13, 862 (2003).CrossRefGoogle Scholar
33.Morris, D.G., Munoz-Morris, M.A., Requejo, L.M., andBaudin, C.: Strengthening at high temperatures by precipitates in Fe-Al-Nb alloys. Intermetallics 14, 1204 (2006).CrossRefGoogle Scholar
34.Morris, D.G., Requejo, L.M., andMunoz-Morris, M.A.: Age hardening in some Fe-Al-Nb alloys. Scr. Mater. 54, 393 (2006).CrossRefGoogle Scholar
35.Stein, F. and Palm, M.: Re-determination of transition temperatures in the Fe-Al system by differential thermal analysis. Int. J. Mater. Res. 98, 580 (2007).CrossRefGoogle Scholar
36.Risanti, D., Deges, J., Falat, L., Kobayashi, S., Konrad, J., Palm, M., Pter, B., Schneider, A., Stallybrass, C., andStein, F.: Dependence of the brittle-to-ductile transition temperature (BDTT) on the Al content of Fe-Al alloys. Intermetallics 13, 1337 (2005).CrossRefGoogle Scholar
37.Palm, M., Thomas, N., andInden, G.: The Fe-Al-Ti system. Rev. Metall. SF 2M, 197 (1996).Google Scholar
38.Su, C.W., Chao, C.G., andLiu, T.F.: Formation of (B2+D03) twophase microstructure in a Fe-23 Al-7 Ti alloy. Mater. Trans. Jap. Inst. Met. 48, 2993 (2007).CrossRefGoogle Scholar
39.Su, C.W., Jeng, S.C., Chao, C.G., andLiu, T.F.: Orientation relationship between C14 precipitate and (A2 + D03) matrix in an Fe-20at.%Al-8at.%Ti alloy. Scr. Mater. 57, 125 (2007).CrossRefGoogle Scholar
40.Ducher, R., Stein, F., Viguier, B., Palm, M., andLacaze, J.: A reexamination of the liquidus surface of the Al-Fe-Ti system. Z. Metallkd. 94, 396 (2003).CrossRefGoogle Scholar
41.Morris, D.G. and Gunther, S.: Room and high temperature mechanical behavior of a Fe3Al-based alloy with a-a″ microstructure. Acta Mater. 45, 811 (1997).CrossRefGoogle Scholar
42.Krein, R. and Palm, M.: Two-fold flow stress anomaly in L21- ordered Fe-Al-Ti based alloys. Mater. Sci. Eng., A 460461, 174 (2007).CrossRefGoogle Scholar
43.Lund, R.W. and Nix, W.D.: High temperature creep of Ni-20Cr- 2ThO2single crystals. Acta Metall. 24, 469 (1976).CrossRefGoogle Scholar
44.Heilmaier, M. and Reppich, B.: Creep lifetime prediction of oxide- dispersion-strengthened nickel-base superalloys: A micromechanically based approach. Metall. Mater. Trans. A 27, 3861 (1996).CrossRefGoogle Scholar
45.Mehrer, H., Eggersmann, M., Gude, A., Salamon, M., andSepiol, B.: Diffusion in intermetallic phases of the Fe-Al and Fe-Si systems. Mater. Sci. Eng., A 239240, 889 (1997).CrossRefGoogle Scholar
46.Lawley, A., Coll, J.A., andCahn, R.W.: Influence of crystallographic order on creep of iron-aluminum solid solutions. Trans. AIME 218, 166 (1960).Google Scholar
47.Whittenberger, J.D.: The influence of grain size and composition on slow plastic flow in FeAl between 1100 and 1400 K. Mater. Sci. Eng. 77, 103 (1986).CrossRefGoogle Scholar
48.Sastry, D.H. and Sundar, R.S.: Effect of alloying elements on high-temperature creep of nickel and iron aluminides, in International Symposium on Nickel and Iron Aluminides: Processing, Properties, and Applications, edited by Deevi, S.C., Maziasz, P.J., Sikka, V.K., and Cahn, R.W. (ASM International, Materials Park, OH, 1997), p. 123.Google Scholar
49.Milenkovic, S. and Palm, M.: Microstructure and mechanical properties of directionally solidified Fe-Al-Nb eutectic. Intermetallics 16, 1212 (2008).CrossRefGoogle Scholar
50.Krein, R., Schneider, A., Sauthoff, G., andFrommeyer, G.: Microstructure and mechanical properties of Fe3Al-based alloys with strengthening boride precipitates. Intermetallics 15, 1172 (2007).CrossRefGoogle Scholar
51. B. Pter, Stein, F., Wirth, R., andSpiegel, M.: Early stages of protective oxide layer growth on binary iron aluminides. Z. Phys. Chem. 219, 1489 (2005).Google Scholar
52.Tortorelli, P.F. and DeVan, J.H.: Behavior of iron aluminides in oxidizing and oxidizing/sulfidizing environments. Mater. Sci. Eng., A 153, 573 (1992).CrossRefGoogle Scholar
53.Krein, R.: Investigation of iron aluminium alloys with strengthening borides for high-temperature applications. Masters thesis (Technische Fachhochschule Georg Agricola zu Bochum, 2006), pp. 178.Google Scholar