Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T11:30:30.990Z Has data issue: false hasContentIssue false

Broadband infrared luminescence of Cr3+-doped LiInSiO4 phosphors

Published online by Cambridge University Press:  31 January 2011

Jianrong Qiu*
Affiliation:
State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People's Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Cr3+-doped LiInSiO4 phosphors were prepared by a solid-state reaction method. X-ray diffraction measurement was carried out for crystalline phase identification. Absorption, photoluminescence, excitation, and time-resolved spectra were measured to investigate the optical properties of the phosphors. Two broadband near-infrared emissions centered at 920 and 1172 nm were observed. Time-resolved spectra show that the emission at 1172 nm decays more quickly than the emission at 920 nm. The electron spin resonance spectra exhibit a broad resonance signal at g = 1.96 because of exchange-coupled Cr3+ pairs. The value of Dq/B for low and intermediate crystal fields was evaluated. We suggest that Cr3+ incorporated into different octahedral sites of the crystal is responsible for the different near-infrared luminescence.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Downing, E., Hesselink, L., Ralston, J., Macfarlane, R.A three-color, solid-state, three-dimensional display. Science 273, 1185 (1996)CrossRefGoogle Scholar
2.Pradhan, N., Goorskey, D., Thessing, J., Peng, X.An alternative of CdSe nanocrystal emitters: Pure and tunable impurity emissions in ZnSe nanocrystals. J. Am. Chem. Soc. 127, 17586 (2005)CrossRefGoogle ScholarPubMed
3.Sivakumar, S., van Veggel, F.C.J.M., Raudsepp, M.Bright white light through up-conversion of a single NIR source from sol-gel-derived thin film made with Ln3+-doped LaF3 nanoparticles. J. Am. Chem. Soc. 127, 12464 (2005)CrossRefGoogle ScholarPubMed
4.Mori, A., Ohishi, Y., Sudo, S.Erbium-doped tellurite glass fibre laser and amplifier. Electron. Lett. 33, 863 (1997)CrossRefGoogle Scholar
5.Masuda, H., Suzuki, K., Kawai, S., Aida, K.Ultra-wideband optical amplification with 3 dB bandwidth of 65 nm using a gain-equalised two-stage erbium-doped fibre amplifier and Raman amplification. Electron. Lett. 33, 753 (1997)CrossRefGoogle Scholar
6.Kani, J., Sakamoto, T., Jinno, M., Kanamori, T., Yamada, Y., Oguchi, K.1470nm band wavelength division multiplexing transmission. Electron. Lett. 34, 1118 (1998)CrossRefGoogle Scholar
7.Zhou, S., Jiang, N., Zhu, B., Yang, H., Ye, S., Lakshminarayana, G., Hao, J., Qiu, J.Multifunctional bismuth-doped nanoporous silica glass: From blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers. Adv. Funct. Mater. 18, 1407 (2008)CrossRefGoogle Scholar
8.Zhou, S., Feng, G., Bao, J., Yang, H., Qiu, J.Broadband near-infrared emission from Bi-doped aluminosilicate glasses. J. Mater. Res. 22, 1435 (2007)CrossRefGoogle Scholar
9.Zhou, S., Feng, G., Wu, B., Xu, S., Qiu, J.Transparent Ni2+-doped lithium-alumino-silicate glass-ceramics for broadband near-infrared light source. J. Phys. D: Appl. Phys. 40, 2472 (2007)CrossRefGoogle Scholar
10.Luo, J., Zhou, S., Wu, B., Yang, H., Ye, S., Zhu, B., Qiu, J.Greatly enhanced broadband near-infrared emission due to energy transfer from Cr3+ to Ni2+ in transparent magnesium aluminosilicate glass ceramics. J. Mater. Res. 24, 310 (2009)CrossRefGoogle Scholar
11.Petricevic, V., Gayen, S.K., Alfano, R.R., Yamagishi, K., Anzai, H., Yamaguchi, Y.Laser action in chromium-doped forsterite. Appl. Phys. Lett. 52, 1040 (1988)CrossRefGoogle Scholar
12.Hazenkamp, M.F., Güdel, H.U., Atanasov, M., Kesper, U., Reinen, D.Optical spectroscopy of Cr4+-doped Ca2GeO4 and Mg2SiO4. Phys. Rev. B 53, 2367 (1996)CrossRefGoogle ScholarPubMed
13.Sharonov, M., Bykov, A., Petricevic, V., Alfano, R.Continuous tunable laser operation in both the 1.31 and 1.55 μm telecommunication windows in LiIn(Si/Ge)O4 olivines doped with trivalent chromium. Opt. Lett. 32, 3489 (2007)CrossRefGoogle Scholar
14.Kück, S.Laser-related spectroscopy of ion-doped crystals for tunable solid-state lasers. Appl. Phys. B 72, 515 (2001)CrossRefGoogle Scholar
15.Redhammer, G.J., Roth, G.LiInSiO4: A new monovalent-trivalent olivine. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 59, 38 (2003)CrossRefGoogle ScholarPubMed
16.Shannon, R.D.Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect. A 32, 751 (1976)CrossRefGoogle Scholar
17.Galeev, A.A., Khasanova, N.M., Rudowicz, C., Shakurov, G.S., Bykov, A.B., Bulka, G.R., Nizamutdinov, N.M., Vinokurov, V.M.Multifrequency EPR study of Cr3+ ions in LiScGeO4. J. Phys. Condens. Matter 12, 4465 (2000)CrossRefGoogle Scholar
18.Rager, H.Electron spin resonance of trivalent chromium in forsterite, Mg2SiO4. Phys. Chem. Miner. 1, 371 (1977)CrossRefGoogle Scholar
19.Munin, E., Villaverde, A.B., Bass, M., Cerqua-Richardson, K.Optical absorption, absorption saturation and a useful figure of merit for chromium doped glasses. J. Phys. Chem. Solids 58, 51 (1997)CrossRefGoogle Scholar
20.Schwartz, R.N., Wechsler, B.Electron-paramagnetic-resonance study of transition-metal-doped BaTiO3: Effect of material processing on Fermi-level position. Phys. Rev. B 48, 7057 (1993)CrossRefGoogle ScholarPubMed
21.Liu, W.J.H., Jaffe, S., Yen, W.M.Spectroscopy of Cr3+ and Cr4+ ions in forsterite. Phys. Rev. B 43, 4235 (1991)Google Scholar
22.Rager, H., Hosoya, S., Weiser, G.Electron paramagnetic resonance and polarized optical absorption spectra of Ni2+ in synthetic forsterite. Phys. Chem. Miner. 15, 383 (1988)CrossRefGoogle Scholar
23.Rager, H., Taran, M., Khomcnko, V.Polarized optical absorption spectra of synthetic chromium doped Mg2SiO4 (forsterite). Phys. Chem. Miner. 18, 37 (1991)CrossRefGoogle Scholar
24.Lebedev, V.F., Tenyakov, S.Y., Gaister, A.V., Prokhorov, A.M., Podstavkin, A.S., Shestakov, A.V.Tunable continuous-wave operation of a Cr3+, Li+:Mg2SiO4 laser. Opt. Lett. 31, 1438 (2006)CrossRefGoogle ScholarPubMed
25.Wu, B., Zhou, S., Ruan, J., Qiao, Y., Chen, D., Zhu, C., Qiu, J.Enhanced near-infrared emission from Ni2+ in Cr3+/Ni2+ codoped transparent glass ceramics. Appl. Phys. Lett. 92, 151102 (2008)CrossRefGoogle Scholar
26.Corradi, G., Sothe, H., Spaeth, J-M., Polgar, K.Electron spin resonance and electron-nuclear double-resonance investigation of a new Cr3+ defect on an Nb site in LiNbO3:Mg:Cr. J. Phys. Condens. Matter 3, 1901 (1991)CrossRefGoogle Scholar
27.Resheed, F., O'Donnell, K.P., Henderson, B., Hollis, D.B.Disorder and the optical spectroscopy of Cr3+-doped glasses: 1. Silicate glasses. J. Phys. Condens. Matter 3, 1915 (1991)CrossRefGoogle Scholar