Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T14:46:41.419Z Has data issue: false hasContentIssue false

Alloy substituents for cost reduction in soft magnetic materials

Published online by Cambridge University Press:  23 March 2015

Michael Kurniawan*
Affiliation:
Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15217, USA
Vladimir Keylin
Affiliation:
Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15217, USA
Michael Edward McHenry
Affiliation:
Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15217, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Amorphous and nanocrystalline soft magnets have been investigated extensively in the past two decades. Many materials with attractive soft magnetic properties contain boron, which improves the glass formability, thermal stability and prevents undesirable grain growth. The high price of boron, however, makes the development of new soft magnetic materials and alternative synthesis routes important. We report here a synthesis of cobalt-rich alloys by substituting boron carbide for elemental boron to achieve significantly lower cost. Ribbons produced with and without boron carbide substitution were observed to exhibit comparable soft magnetic properties while the former results in 31–48% cost reduction. Extrapolating this idea to commercial VITROVAC 6025 and 6150, the cost reductions were calculated to be 56 and 50%, respectively, while both synthesis routes produced ribbons of similar soft magnetic properties. Our work here provides an attractive route to reduce the cost and increase the market competitiveness of soft magnets.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

McHenry, M.E., Willard, M.A., and Laughlin, D.E.: Amorphous and nanocrystalline materials for applications as soft magnets. Prog. Mater. Sci. 44, 291 (1999).Google Scholar
Willard, M.A. and Daniil, M.: Nanocrystalline soft magnetic alloys two decades of progress. In Handbook of Magnetic Materials, Vol. 21, Ch. 4; Buschow, ed., 2013; p. 173.Google Scholar
Leary, A.M., Ohodnicki, P.R., and McHenry, M.E.: Soft magnetic materials in high-frequency, high-power conversion applications. JOM 64(7), 772 (2012).Google Scholar
McHenry, M.E. and Laughlin, D.E.: Nano-scale materials development for future magnetic applications. Acta Mater. 48(1), 223 (2000).Google Scholar
Ramanan, V.R.V. and Fish, G.E.: Crystallization kinetics in Fe−B−Si metallic glasses. J. Appl. Phys. 53, 2273 (1982).Google Scholar
Donald, I.W. and Davies, H.A.: The influence of transition metal substitutions on the formation, stability and hardness of some Fe- and Ni-based metallic glasses. Philos. Mag. A 42(3), 277 (1980).Google Scholar
Chen, S.L., Liu, W., Geng, D.Y., Zhao, X.G., and Zhang, Z.D.: Decomposition of B4C and magnetic properties of Nd–Fe–(B, C) alloys synthesized by mechanical alloying. J. Alloys Compd. 415, 271 (2006).Google Scholar
Sui, Y.C., Zhang, Z.D., Xiao, Q.F., Liu, W., Zhao, X.G., Zhao, T., and Chuang, Y.C.: Nd - Fe - (C, B) permanent magnets made by mechanical alloying and subsequent annealing. J. Phys.: Condens. Matter 8, 11231 (1996).Google Scholar
Sui, Y.C., Zhang, Z.D., Xiao, Q.F., Liu, W., Zhao, T., Zhao, X.G., and Chuang, Y.C.: Structure, phase transformation and magnetic properties of Nd–Fe–C alloys made by mechanical alloying and subsequent annealing. J. Alloys Compd. 267, 215 (1998).Google Scholar
Kou, X.C., Sun, X.K., Chuang, Y.C., Grossinger, R., and Kirchmayr, H.R.: Structure and magnetic properties of R2Fe14B1-xCx compounds (R = Y, Nd). J. Magn. Magn. Mater. 80, 31 (1989).CrossRefGoogle Scholar
McHenry, M.E., Johnson, F., Okumura, H., Ohkubo, T., Hsiao, A., Ramanan, V.R.V., and Laughlin, D.E.: The kinetics of nanocrystallization and microstructural observations in FINEMET, NANOPERM and HITPERM nanocomposite magnetic materials. Scr. Mater. 48, 881 (2003).Google Scholar
Hsiao, A., McHenry, M.E., Laughlin, D.E., Kramer, M.J., Ashe, C., and Okubo, T.: The thermal, magnetic, and structural characterization of the crystallization kinetics of Fe88Zr7B4Cu1, an amorphous soft magnetic ribbon. IEEE Trans. Magn. 38, 2946 (2002).CrossRefGoogle Scholar
Inoue, A., Miyauchi, Y., and Masumoto, T.: Soft magnetic Fe-Zr-Si-B alloys with nanocrystalline structure. Mater. Trans., JIM 36, 689 (1995).CrossRefGoogle Scholar
Butvinova, B., Butvin, P., Illekova, E., Svec, P., Vlasak, G., Janickovic, D., and Kadlecikova, M.: Impact of phosphorus for boron substitution on magnetic properties of magnetostrictive finemets. Acta Electrotech. Inf. 13, 78 (2013).Google Scholar
Okumura, H., Laughlin, D.E., and McHenry, M.E.: Magnetic and structural properties and crystallization behavior of Si-rich FINEMET materials. J. Magn. Magn. Mater. 267, 347 (2003).Google Scholar
Zabransky, K. and Jiraskova, Y.: Physical and chemical properties of FINEMET-type amorphous alloys. Acta Phys. Pol., A 113(1), 123 (2008).Google Scholar
Long, J., Laughlin, D.E., and McHenry, M.E.: Structural and soft magnetic properties of a new nanocrystalline Fe-based and B-free alloy. J. Appl. Phys. 103, 07E708 (2008).Google Scholar
Makino, A.: Nanocrystalline soft magnetic Fe-Si-B-P-Cu alloys with high B of 1.8–1.9T contributable to energy saving. IEEE Trans. Magn. 48(4), 1331 (2012).Google Scholar
Makino, A., Kubota, T., Makabe, M., Chang, C.T., and Inoue, A.: FeSiBP bulk metallic glasses with high magnetization and excellent magnetic softness. J. Magn. Magn. Mater. 320(20), 2499 (2008).Google Scholar
Bordin, G., Buttino, G., Cecchetti, A., and Poppi, M.: Nanocrystallization of ferromagnetic Co-rich amorphous alloys and magnetic softening. J. Phys. D: Appl. Phys. 30, 2163 (1997).Google Scholar
Ghemawhat, A.M., McHenry, M.E., and O'Handley, R.C.: Magnetic moment suppression in rapidly solidified Co-TE-B alloys. J. Appl. Phys. 63, 3388 (1988).Google Scholar
Kurniawan, M., Roy, R.K., Panda, A.K., Greve, D.W., Ohodnicki, P., and McHenry, M.E.: Temperature-dependent giant magnetoimpedance effect in amorphous soft magnets. J. Electron. Mater. 43, 4576 (2014).Google Scholar
Ohodnicki, P.R., Park, S.Y., McWilliams, H.K., Ramos, K., Laughlin, D.E., and McHenry, M.E.: Phase evolution during crystallization of nanocomposite alloys with Co:Fe ratios in the two- phase region of the binary Fe–Co phase diagram. J. Appl. Phys. 101, 09N108 (2007).Google Scholar
Ohodnicki, P.R., Park, S.Y., Laughlin, D.E., McHenry, M.E., Keylin, V., and Willard, M.A.: Crystallization and thermomagnetic treatment of a Co-rich Co–Fe–Ni–Zr–B–Cu based nanocomposite alloy. J. Appl. Phys. 103, 07E729 (2008).CrossRefGoogle Scholar
Ohodnicki, P.R., Keylin, V., McWilliams, H.K., Laughlin, D.E., and McHenry, M.E.: Phase evolution and field-induced magnetic anisotropy of the nanocomposite three-phase fcc, hcp, and amorphous soft magnetic alloy Co89Zr7B4 . J. Appl. Phys. 103, 07E740 (2008).CrossRefGoogle Scholar
Ohodnicki, P.R., Long, J., E Laughlin, D., McHenry, M.E., Keylin, V., and Huth, J.: Composition dependence of field induced anisotropy in ferromagnetic (Co, Fe)89Zr7B4 and (Co, Fe)88Zr7B4Cu1 amorphous and nanocrystalline ribbons. J. Appl. Phys. 104, 113909 (2008).CrossRefGoogle Scholar
Makino, A., Bitoh, T., Kojima, A., Inoue, A., and Masumoto, T.: Magnetic properties of zero-magnetostrictive nanocrystalline Fe–Zr–Nb–B soft magnetic alloys with high magnetic induction. J. Magn. Magn. Mater. 215, 288 (2000).Google Scholar
Swierczek, J., Lampa, H., Nitkiewicz, Z., and Bałaga, Z.: Microstructure and some magnetic properties of annealed Vitrovac 6025X amorphous ribbons. Mater. Sci. Eng., A 356(1), 108 (2003).CrossRefGoogle Scholar
Quintana, P., Amano, E., Valenzuela, R., and Irvine, J.T.S.: Effects of nanocrystallization upon the soft magnetic properties of Co-based amorphous alloys. J. Appl. Phys. 75, 6940 (1994).CrossRefGoogle Scholar
Betancourt, I., Jimenez, M., Aburto, S., Marquina, V., Gomez, R., Marquina, M.L., Ridaura, R., Miki, M., and Valenzuela, R.: Nanocrystallization studies in Co-rich amorphous alloys. J. Magn. Magn. Mater. 140, 459 (1995).Google Scholar
Tejedor, M., Garcı́a, J.A., Carrizo, J., Elbaile, L., Mira, J., and Rivas, J.: Anomalous evolution of torque curves with the applied magnetic field in amorphous ribbons due to surface roughness. J. Appl. Phys. 84, 4410 (1998).CrossRefGoogle Scholar
Quintana, P., Amano, E., and Valenzuela, R.: Effects of crystallization on the magnetization dynamics of Vitrovac amorphous ribbons. Mater. Sci. Eng., A 181, 978 (1994).Google Scholar
Kernion, S.J., Leary, A., Shen, S., Luo, J., Grossman, J., Keylin, V., Huth, J.F., Lucas, M.S., Ohodnicki, P.R., and McHenry, M.E.: Giant induced magnetic anisotropy in strain annealed Co-based nanocomposite alloys. Appl. Phys. Lett. 101, 102408 (2012).Google Scholar
Johnson, F., Um, C.Y., McHenry, M.E., and Garmestami, H.: The influence of composition and field annealing on magnetic properties of FeCo-based amorphous and nanocrystalline alloys. J. Magn. Magn. Mater. 297, 93 (2006).Google Scholar
Ohodnicki, P.R., E Laughlin, D., McHenry, M.E., Keylin, V., and Huth, J.: Temperature stability of field induced anisotropy in soft ferromagnetic Fe,Co-based amorphous and nanocomposite ribbons. J. Appl. Phys. 105, 07A322 (2009).Google Scholar
Yan, G.H., Chen, R.J., Ding, Y., Guo, S., Lee, D., and Yan, A.R.: The preparation of sintered NdFeB magnet with high-coercivity and high temperature-stability. J. Phys.: Conf. Ser. 266, 012052 (2011).Google Scholar
Gallagher, K.A., Willard, M.A., Zabenkin, V., Laughlin, D.E., and McHenry, M.E.: Distributed exchange interactions and temperature dependent magnetization in amorphous Fe88−xCoxZr7B4Cu1 alloys. J. Appl. Phys. 85, 5130 (1999).CrossRefGoogle Scholar
Turgut, Z., Ferguson, D.T., Huang, M.Q., Wallace, W.E., and McHenry, M.E.: Thermal plasma synthesis of γ-FeN, Nanoparticles as precursors for the Fe16N2 synthesis by annealing. MRS Proc. 577, 399 (1999).Google Scholar
Ping, D.H., Wu, Y.Q., Hono, K., Willard, M.A., McHenry, M.E., and Laughlin, D.E.: Microstructural characterization of (Fe0.5Co0.5)88Zr7B4Cu1 nanocrystalline alloys. Scr. Mater. 45, 781 (2001).Google Scholar
Ohodnicki, P.R., Qin, Y.L., Laughlin, D.E., McHenry, M.E., Kodzuka, M., Ohkuba, T., Hono, K., and Willard, M.A.: Composition and non-equilibrium crystallization in partially devitrified Co-rich soft magnetic nanocomposite alloys. Acta Mater. 57, 87 (2009).Google Scholar
DeGeorge, V., Deveraj, A., Keylin, V., Cui, J., and McHenry, M.E.: Mass Balance and Atom Probe Tomography (APT) Characterization of Soft Magnetic (Fe65Co35)79.5B13Si2Nb4Cu1.5 Nanocomposites. IEEE Trans. Magn. PP(99), 1 (2014).Google Scholar
Kernion, S.J., Miller, K.J., Shen, S., Keylin, V., Huth, J., and McHenry, M.E.: High induction, low loss FeCo-based nanocomposite alloys with reduced metalloid content. IEEE Trans. Magn. 47, 3452 (2011).Google Scholar
Domnich, V., Reynaud, S., Haber, R.A., and Chowalla, M.: Boron carbide: Structure, properties, and stability under stress. J. Am. Ceram. Soc. 94(11), 3605 (2011).Google Scholar
Thevenot, F.: A review on boron carbide. Key Eng. Mater. 56, 59 (1991).Google Scholar
Niihara, K., Nakahira, A., and Hirai, T.: The effect of stoichiometry on mechanical properties of Boron carbide. J. Am. Ceram. Soc. 67(1), C13 (1984).Google Scholar
Lu, B., Huang, M.Q., Chen, Q., Ma, B.M., and Laughlin, D.E.: Magnetic coupling in boron-rich NeFeB nanocomposites. J. Appl. Phys. 85(8), 5920 (1999).Google Scholar
Kernion, S.J., Keylin, V., Huth, J., and McHenry, M.E.: Secondary crystallization in (Fe65Co35)79.5+xB13Nb4-xSi2Cu1.5 and (Fe65Co35)83B10Nb4Si2Cu1 nanocomposite alloys. J. Appl. Phys. 111, 07A329 (2012).Google Scholar
Long, J., McHenry, M.E., Urciuoli, D.P., Keylin, V., Huth, J., and Salem, T.E.: Nanocrystalline material development for high-power inductors. J. Appl. Phys. 103, 07E705 (2008).Google Scholar
Zhang, Y., Blazquez, J.S., Conde, A., Warren, P.J., and Cerezo, A.: Partitioning of Co during crystallisation of Fe–Co–Nb–B(–Cu) amorphous alloys. Mater. Sci. Eng., A 353, 158 (2003).CrossRefGoogle Scholar
Lin, C.Y., Tien, H.Y., and Chin, T.S.: Soft magnetic ternary iron-boron-based bulk metallic glasses. Appl. Phys. Lett. 86, 162501 (2005).CrossRefGoogle Scholar