Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T22:43:54.655Z Has data issue: false hasContentIssue false

Toward Correlation in In Vivo and In Vitro Nanotoxicology Studies

Published online by Cambridge University Press:  01 January 2021

Extract

Much of the focus of the published 2011 symposium that inspired this work focused on the question, “When have you reduced risk enough to move from bench/animal studies to ‘first in-human’ studies?” Building applied research ethics related to nanotherapeutics requires bench and clinical scientists to have a clear vision about how to test nanotherapeutic safety, and it is clear that there is still much to be considered at the steps before “in-human” assessment. Herein, the perspective of the bench scientist is brought to bear on using in vivo and in vitro models to assess the safety of nanotherapeutics. Much of this work falls under the purview of the field of nanotoxicology that aims to understand the toxicological impact of engineered nanoscale materials. Engineered nanomaterials include a wide variety of materials that are manipulated and controlled on the nanoscale level where, typically, the nanoparticle or nanomaterial has some dimension that is less than 100 nm.

Type
Symposium
Copyright
Copyright © American Society of Law, Medicine and Ethics 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Xie, J. Lee, S., and Chen, X., “Nanoparticle-Based Theranostic Agents,” Advanced Drug Delivery Reviews 62, no. 11 (2010): 10641079.CrossRefGoogle Scholar
Lin, Y.-S. Hurley, K. R., and Haynes, C. L., “Critical Considerations in the Biomedical Use of Mesoporous Silica Nanoparticles,” Journal of Physical Chemistry Letters 3, no. 3 (2012): 364374.CrossRefGoogle Scholar
Etheridge, M. L. Campbell, S. A. Erdman, A. G. Haynes, C. L. Wolf, S. M., and McCullough, J., “The Big Picture on Nanomedicine: The State of Investigational and Approved in Nanomedicine Products,” Nanomedicine: Nanotechnology, Biology, and Medicine (2012): In press.CrossRefGoogle Scholar
von Escherbach, A. C., Nanotechnology: A Report of the U.S. Food and Drug Administration Nanotechnology Task Force (Rockville, MD: U.S. Food and Drug Administration, 2007).Google Scholar
Marquis, B. J. Maurer-Jones, M. A. Ersin, O. E. Lin, Y.-S., and Haynes, C. L., “The Bench Scientist's Perspective on the Unique Considerations in Nanoparticle Regulation,” Journal of Nanoparticle Research 13, no. 4 (2011): 13891400.CrossRefGoogle Scholar
Marquis, B. J. Love, S. A. Braun, K. L., and Haynes, C. L., “Analytical Methods to Assess Nanoparticle Toxicity,” Analyst 134, no. 3 (2009): 425439; Maurer-Jones, M. A. Bantz, K. C. Love, S. A. Marquis, B. J., and Haynes, C. L., “Toxicity of Therapeutic Nanoparticles,” Nanomedicine 4, no. 2 (2009): 219–241; Love, S. A. Maurer-Jones, M. A. Thompson, J. W. Lin, Y.-S., and Haynes, C. L., “Assessing Nanoparticle Toxicity,” Annual Review of Analytical Chemistry 5 (2012): 181–205.CrossRefGoogle Scholar
See Marquis, et al., supra note 5.Google Scholar
Pari Pharma GmbH, “L-CsA in the Prevention of Bronchiolitis Obliterans Syndrome (BOS) in Lung Transplant (LT) Patients,” U.S. National Institutes of Health, available at <http://www.clinicaltrials.gov/ct2/show/NCT01334892?term=NCT01334892&rank=1> (last visited November 8, 2012).+(last+visited+November+8,+2012).>Google Scholar
Oberdorster, G. Stone, V., and Donaldson, K., “Toxicology of Nanoparticles: A Historical Perspective,” Nanotoxicology 1, no. 1 (2007): 225.CrossRefGoogle Scholar
See Love, et al., supra note 6.Google Scholar
Horie, M. Fukui, H. Nishio, K. Endoh, S. Kato, H. Fujita, K. Miyauchi, A. Nakamura, A. Shichiri, M. Ishida, N. Kinugasa, S. Morimoto, Y. Niki, E. Yoshida, Y., and Iwahashi, H., “Evaluation of Acute Oxidative Stress Induced by Nio Nanoparticles In Vivo and In Vitro,” Journal of Occupational Health 53, no. 2 (2011): 6474; Warheit, D. B. Sayes, C. M., and Reed, K. L., “Nanoscale and Fine Zinc Oxide Particles: Can In Vitro Assays Accurately Forecast Lung Hazards Following Inhalation Exposures?” Environmental Science and Technology 43, no. 20 (2009): 7939–7945; Tabet, L. Bussy, C. Setyan, A. Simon-Deckers, A. Rossi, M. J. Boczkowski, J., and Lanone, S., “Coating Carbon Nanotubes with a Polystyrene-Based Polymer Protects against Pulmonary Toxicity,” Particle and Fibre Toxicology 8 (2011): 3; Rushton, E. K. Jiang, J. Leonard, S.S. Eberly, S. Castranova, V. Biswas, P. Elder, A. Han, X. Gelein, R. Finkelstein, J. and Oberdorster, G., “Concept of Assessing Nanoparticle Hazards Considering Nanoparticle Dosemetric and Chemical/Biological Response Metrics,” Journal of Toxicology and Environmental Health Part A, 73 (2010): 445–461.CrossRefGoogle Scholar
See Horie, et al., supra note 13.Google Scholar
See Warheit, et al., supra note 13.Google Scholar
Wang, X. Xia, T. Addo, N. S. Ji, Z. Lin, S. Meng, H. Chung, C.-H. George, S. Zhang, H. Wang, M. Li, N. Yang, Y. Castranova, V. Mitra, S. Bonner, J., and Nel, A., “Dispersal State of Multiwalled Carbon Nanotubes Elicits Profibrogenic Cellular Responses That Correlate with Fibrogenesis Biomarkers and Fibrosis in the Murine Lung,” ACS Nano 5, no. 12 (2011): 97729787.CrossRefGoogle Scholar
Cryan, S.-A. Sivadas, N., and Garcia-Contreras, L., “In Vivo Animal Models for Drug Delivery across the Lung Mucosal Barrier,” Advanced Drug Delivery Reviews 59, no. 11 (2007): 11331151.CrossRefGoogle Scholar
See Love, et al., supra note 6.Google Scholar
Melo, P. S. Marcato, P. D. Hubert, S. C. Ferreira, I. R. de, P. L. B. Almeida, A. B. A. Duran, N. Torsoni, S. Seabra, A. B., and Alves, O. L., “Nanoparticles in Treatment of Thermal Injured Rats: Is It Safe?” Journal of Physics: Conference Series 304, no. 1(2011): 012027/012021012027/012028.Google Scholar
Samberg, M. E. Oldenburg, S. J., and Monteiro-Riviere, N. A., “Evaluation of Silver Nanoparticle Toxicity in Skin In Vivo and Keratinocytes In Vitro,” Environmental Health Perspectives 118, no. 3 (2010): 407413.CrossRefGoogle Scholar
Murray, A. R. Kisin, E. Leonard, S. S. Young, S. H. Kommineni, C. Kagan, V. E. Castranova, V., and Shvedova, A. A., “Oxidative Stress and Inflammatory Response in Dermal Toxicity of Single-Walled Carbon Nanotubes,” Toxicology 257, no. 3 (2009): 161171.CrossRefGoogle Scholar
Park, Y.-H. Kim, J. N. Jeong, S. H. Choi, J. E. Lee, S.-H. Choi, B. H. Lee, J. P. Sohn, K. H. Park, K. L. Kim, M-.K., and Son, S. W., “Assessment of Dermal Toxicity of Nanosilica Using Cultured Keratinocytes, a Human Skin Equivalent Model and an In Vivo Model,” Toxicology 267, no. 1-3 (2010): 178181.CrossRefGoogle Scholar
Mbah, C. J. Uzor, P. F., and Omeje, E. O., “Perspectives on Transdermal Drug Delivery,” Journal of Chemical and Pharmaceutical Research 3, no. 3 (2011): 680700.Google Scholar
Des Rieux, A. Fievez, V. Garinot, M. Schneider, Y.-J., and Preat, V., “Nanoparticles as Potential Oral Delivery Systems of Proteins and Vaccines: A Mechanistic Approach,” Journal of Controlled Release 116, no. 1 (2006): 127.CrossRefGoogle Scholar
See Love, et al., supra note 6.Google Scholar
Mahler, G. J. Esch, M. B. Tako, E. Southard, T. L. Archer, S. D. Glahn, R. P., and Shuler, M. L., “Oral Exposure to Polystyrene Nanoparticles Affects Iron Absorption,” Nature Nanotechnology 7, no. 4 (2012): 264271.CrossRefGoogle Scholar
Moulari, B. Pertuit, D. Pellequer, Y., and Lamprecht, A., “The Targeting of Surface Modified Silica Nanoparticles to Inflamed Tissue in Experimental Colitis,” Biomaterials 29, no. 34 (2008): 45544560. 29. Jain, A. K. Swarnakar, N. K. Das, M. Godugu, C. Singh, R. P. Rao, P. R., and Jain, S., “Augmented Anticancer Efficacy of Doxorubicin-Loaded Polymeric Nanoparticles after Oral Administration in a Breast Cancer Induced Animal Model,” Molecular Pharmaceutics 8, no. 4 (2011): 1140–1151.CrossRefGoogle Scholar
See Etheridge, et al., supra note 3.Google Scholar
See Love, et al., supra note 6.Google Scholar
Al-Jamal, W. T. Al-Jamal, K. T. Bomans, P. H. Frederik, P. M., and Kostarelos, K., “Functionalized-Quantum-Dot-Liposome Hybrids as Multimodal Nanoparticles for Cancer,” Small 4, no. 9 (2008): 14061415; Devalapally, H. Duan, Z. Seiden, M. V., and Amiji, M. M., “Modulation of Drug Resistance in Ovarian Adenocarcinoma by Enhancing Intracellular Ceramide Using Tamoxifen-Loaded Biodegradable Polymeric Nanoparticles,” Clinical Cancer Research 14, no. 10 (2008): 3193–3203; Gannon, C. J. Cherukuri, P. Yakobson, B. I. Cognet, L. Kanzius, J. S. Kittrell, C. Weisman, R. B. Pasquali, M. Schmidt, H. K. Smalley, R. E., and Curley, S. A., “Carbon Nanotube-Enhanced Thermal Destruction of Cancer Cells in a Noninvasive Radio-frequency Field,” Cancer 110, no. 12 (2007): 2654–2665.CrossRefGoogle Scholar
Singh, S. K. Singh, M. K. Nayak, M. K. Kumari, S. Shrivastava, S. Gracio, J. J. A., and Dash, D., “Thrombus Inducing Property of Atomically Thin Graphene Oxide Sheets,” ACS Nano 5, no. 6 (2011): 49874996.CrossRefGoogle Scholar
See Marquis, et al., supra note 5; A. Maynard, D. Warheit, D. B., and Philbert, M. A., “The New Toxicology of Sophisticated Materials: Nanotoxicology and Beyond,” Toxicological Sciences 120, no. S1 (2011): S109S129.Google Scholar
See Lin, et al., supra note 2.Google Scholar
Lundqvist, M. Stigler, J. Elia, G. Lynch, I. Cedervall, T., and Dawson, K. A., “Nanoparticle Size and Surface Properties Determine the Protein Corona with Possible Implications for Biological Impacts,” Proceedings of the National Academy of Sciences of the United States of America 105, no. 38 (2008): 1426514270.CrossRefGoogle Scholar
Lin, Y. S. and Haynes, C. L., “Impacts of Mesoporous Silica Nanoparticle Size, Pore Ordering, and Pore Integrity on Hemolytic Activity,” Journal of the American Chemical Society 132, no. 13 (2010): 48344842.CrossRefGoogle Scholar
Gilliam, L. A. A. and St. Clair, D. K., “Chemotherapy-Induced Weakness and Fatigue in Skeletal Muscle: The Role of Oxidative Stress,” Antioxidant & Redox Signaling 15, no. 9 (2011): 25432563.CrossRefGoogle Scholar
National Research Council, Toxicity Testing in the 21st Century: A Vision and a Strategy (Washington, D.C.: National Academy Press, 2007).Google Scholar
See Maynard, et al., supra note 36.Google Scholar