Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-03T08:50:58.310Z Has data issue: false hasContentIssue false

Human temporal bone feedings in acquire hypothyroidism

Published online by Cambridge University Press:  29 June 2007

J. Hald
Affiliation:
Department of Audiology, Bispebjerg Hospital, Copenhagen, Denmark.
C. M. Milroy
Affiliation:
Department of Histopathology, University College and Middlesex School of Medicine, London, England.
K. Damkjær Jensen
Affiliation:
Institute of Pathology, Bispebjerg Hospital, Copenhagen, Denmark.
A. Parving*
Affiliation:
Department of Audiology, Bispebjerg Hospital, Copenhagen, Denmark.
*
Agnete Parving, Cheif Physician, Department of Audiology, Bispebjerg Hospital, DK 2100 Copenhagen, Denmark.

Abstract

Histological studies of the auditory organ in patients with acquired hypothyroidism are scarce. Thus the aim of the present study was to examine the temporal bones and the brain is subjects with hypothyroidism. Four temporal bones and two brains from clinically and biochemically hypothyroid subjects were removed and evaluated by light microscopy determine to the morphological changes and deposition of neutral and acid glycosaminnoglycans. An audiogram from one of the patients showed a sensorineural hearing loss. Which could be ascribed to occupational noise exposure. The study revealed histological changes compatible with age and infectious disease. No accumulation of neutral or acid glycosaminoglycans could be demonstrated in the temporal bones, or in the brains.

Type
Main Articles
Copyright
Copyright © JLO (1984) Limited 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anniko, M. (1981) Effects of decalcification on the membraneous labyrinth. Micron, 12: 103114.Google Scholar
Anniko, M., Rosenkvist, U. (1982) Tectorial and basal membranes in experimental hypothyroidism. Archives of Otolaryngology, 108: 218220.CrossRefGoogle ScholarPubMed
Bhatia, P. L., Gupta, O. P., Agrawal, M. K., Mishr, S. K. (1977) Audiological and vestibular function tests in hypothyroidism. Laryngoscope, 87: 20822089.CrossRefGoogle ScholarPubMed
De Vos, J. A. (1963) Deafness n hypothyroidism. Journal of Laryngology, 77: 390414.CrossRefGoogle Scholar
Hilger, J. A. (1956) Otolaryngologic aspects of hypometabolism. Annals of Otology, Rhinology and Laryngology, 65: 395413.CrossRefGoogle ScholarPubMed
Himmelfarb, M. Z., Lakretz, T., Gold, S., Shanon, E. (1981) Auditory brain stem responses in thyroid dyfunction. Journal of Laryngology and Otology, 95: 679686.CrossRefGoogle Scholar
Klinken, L. (1991) General histopathological changes in the central nervous system with age. Acta Otolaryngologica, Supplement 476: 149152.CrossRefGoogle Scholar
Kohonen, A., Jauhiainen, T., Liewendahl, K., Tarkkanen, J. (1971) Deafness in experimental hypo- and hyperthyroidism. Laryngoscope, 81: 947956.CrossRefGoogle ScholarPubMed
Marquet, J. (1956) A propos des troubles auditifs chez les hypothyroidiens. Acta Oto-Rhino-Laryngologica (Belgica), 104: 423438.Google Scholar
Meyerhoff, W. L. (1979) Hypothyroidism and the ear: electrophysiologica, morphological, chemical considerations. Laryngoscope, 89 (Supplement 19).CrossRefGoogle Scholar
Michaels, L., Wells, M., Frohlich, A. (1983) A new technique for study of temporal bone pathology. Clinical Otolaryngology, 8: 7785.CrossRefGoogle ScholarPubMed
Michaels, L. (1987) Miniére's disease: pathology of the vestibular system. Presbyacusis. In Ear, Nose and Throat Histopathology, Springer Verlag: London, p. 108112.CrossRefGoogle Scholar
Parving, H.-H., Helin, G., Garbasch, C., Johansen, A. A., Jensen, B. A., Helin, P., Lund, P., Lyngsøe, J. (1982) Acid glycosaminoglycans in myxoedema. Clinical Endocrinology, 16: 207210.CrossRefGoogle ScholarPubMed
Parving, A., Parving, H.-H., Lyngsøe, J. (1983) Hearing sensitivity in patients with myxoedema before and after treatment with l-thyroxine. Acta Otolaryngologica, 95: 315321.CrossRefGoogle ScholarPubMed
Parving, A., Ostri, B., Bretlau, P., Hansen, J. M., Parving, H.-H. (1986) Audiological and temporal bone findings in myxoedema. Annals of Otology, Rhinology and Laryngology, 95: 278283.CrossRefGoogle Scholar
Poulsen, H. (1966) Thyrotrophic and thyroid hormone control of the inner ear with special reference to myoedema and Menière's disease. In: Hormones and connective tissue (Asboe-Hansen, G., ed.), Williams and Wilkins Co., Baltimore, Md., p. 239257.Google Scholar
Ritter, F. N. (1967) The effects of hypothyroidism upon the ear, nose and throat. Laryngoscope, 77: 14271479.CrossRefGoogle ScholarPubMed
Schätzle, W., Haubrich, J. (1967) Histochemical changes in the guinea pig cochlea in the experimental hypothyroidism. Archiv für Kliniche Experimentale Ohr-NAS-Kehlkopfkrankheit, 188: 224231.CrossRefGoogle ScholarPubMed
Stephens, S. D. G. (1970) Temporary threshold drift in myxoedema. Journal of Laryngolocy and Otology, 84: 317321.CrossRefGoogle ScholarPubMed
Vanasse, M., Fischer, C., Berthezene, F., Rovy, Y., Volman, G., Mornex, R. (1989) Normal brainstem auditory evoked potentials in adult hypothyroidism. Laryngoscope, 99/3: 302306.CrossRefGoogle ScholarPubMed
Withers, B. T., Reuter, S., Janeke, J. (1972) The effects of hypothyroidism on the ears of cats and squirrel monkeys: A pilot study. Laryngoscope, 82: 779784.CrossRefGoogle ScholarPubMed
Van't Hoff, W., Stuart, D. W. (1979) Deafness in myxoedema. Quarterly Journal of Medicine, 48: 361367.Google ScholarPubMed