Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T09:10:43.487Z Has data issue: false hasContentIssue false

Relative pairing in cyclic cohomology and divisor flows

Published online by Cambridge University Press:  11 February 2008

Matthias Lesch
Affiliation:
Mathematisches Institut, Universität Bonn, Beringstr. 1, 53115 Bonn, Germany, [email protected].
Henri Moscovici
Affiliation:
Department of Mathematics, The Ohio State University, Columbus, OH 43210, USA, [email protected].
Markus J. Pflaum
Affiliation:
Department of Mathematics, University of Colorado UCB 395, Boulder, CO 80309, USA, [email protected].
Get access

Abstract

We construct invariants of relative K-theory classes of multiparameter dependent pseudodifferential operators, which recover and generalize Melrose's divisor flow and its higher odd-dimensional versions of Lesch and Pflaum. These higher divisor flows are obtained by means of pairing the relative K-theory modulo the symbols with the cyclic cohomological characters of relative cycles constructed out of the regularized operator trace together with its symbolic boundary. Besides giving a clear and conceptual explanation to the essential features of the divisor flows, namely homotopy invariance, additivity and integrality, this construction allows to uncover the previously unknown even-dimensional counterparts. Furthermore, it confers to the totality of these invariants a purely topological interpretation, that of implementing the classical Bott periodicity isomorphisms in a manner compatible with the suspension isomorphisms in both K-theory and in cyclic cohomology. We also give a precise formulation, in terms of a natural Clifford algebraic suspension, for the relationship between the higher divisor flows and the spectral flow.

Type
Research Article
Copyright
Copyright © ISOPP 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Atiyah, M. F., Patodi, V. K., and Singer, I. M.: Spectral asymmetry and Riemannian geometry I,, Math. Proc. Camb. Phil. Soc. 77 (1975), 4369Google Scholar
2.Blackadar, B.: K-Theory of Operator Algebras, Springer Verlag, New York, 1986Google Scholar
3.Connes, A.: An analogue of the Thom isomorphism for crossed products of a C*-algebra by an action of , Adv. Math. 39 (1981), 3155CrossRefGoogle Scholar
4.Connes, A.: Noncommutative differential geometry, Inst. Hautes Études Sci. Publ. Math. 62 (1985), 257360Google Scholar
5.Connes, A.: Noncommutative Geometry, Academic Press, 1994Google Scholar
6.Connes, A. and Moscovici, H.: Cyclic cohomology, the Novikov conjecture and hyperbolic groups, Topology 29 (1990), no. 3, 345388CrossRefGoogle Scholar
7.Cuntz, J. and Quillen, D.: Excision in bivariant periodic cyclic cohomology. Invent. Math. 127 (1997), no. 1, 6798CrossRefGoogle Scholar
8.Elliott, G. A., Natsume, T., and Nest, R.: Cyclic cohomology for one–parameter smooth crossed products, Acta Math. 160 (1988), 285305CrossRefGoogle Scholar
9.Getzler, E.: The odd Chern character in cyclic homology and the spectral flow. Topology 32 (1993), no. 3, 489507CrossRefGoogle Scholar
10.Gilkey, P.: Invariance theory, the heat equation, and the Atiyah–Singer index theorem, Publish or Perish, Wilmington, DE, 1984Google Scholar
11.Gorokhovsky, A.: Characters of cycles, equivariant characteristic classes and Fredholm modules, Comm. Math. Phys. 208 (1999), 123CrossRefGoogle Scholar
12.Gramsch, B.: Relative Inversion in der Störungstheorie von Operatoren und Ψ- Algebren, Math. Ann. 209 (1984), 2771CrossRefGoogle Scholar
13.Grigis, A. and Sjøstrand, J.: Microlocal analysis for differential operators, London Mathematical Society Lecture Note Series, vol. 196, Cambridge University Press, 1994Google Scholar
14.Higson, N. and Roe, J.: Analytic K-homology, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2000Google Scholar
15.Hörmander, L.: Fourier integral operators. I, Acta Math. 127 (1971), 79183CrossRefGoogle Scholar
16.Karoubi, M.: K-theory – An introduction, Grundlehren der mathematischen Wissenschaften, vol. 226, Springer–Verlag, Berlin–Heidelberg–New York, 1978Google Scholar
17.Kirk, P. and Lesch, M: The η-invariant, Maslov index, and spectral flow for Dirac-type operators on manifolds with boundary, Forum Math. 16 (2004), 553629, math. DG/0012123CrossRefGoogle Scholar
18.Lesch, M.: On the noncommutative residue for pseudodifferential operators with logpolyhomogeneous symbols, Ann. Global Anal. Geom. 17 (1999), 151187CrossRefGoogle Scholar
19.Lesch, M., and Pflaum, M. J.: Traces on algebras of parameter dependent pseudodifferential operators and the eta-invariant, Trans. Amer. Math. Soc. 352 (2000), no. 11, 49114936Google Scholar
20.Loday, J. L.: Cyclic Homology. Grundlehren der mathematischen Wissenschaften, vol. 301, Springer–Verlag, Berlin–Heidelberg–New York, 1992Google Scholar
21.Melrose, R. B.: The eta invariant and families of pseudodifferential operators. Math. Res. Lett. 2 (1995), no. 5, 541561Google Scholar
22.Moscovici, H. and Wu, F.: Index theory without symbols, In: C*-algebras: 1943–1993 (San Antonio, TX, 1993), pp. 304351, Contemp. Math., 167, Amer. Math. Soc., Providence, RI, 1994Google Scholar
23.Moroianu, S.: K-theory of suspended pseudo-differential operators. K-Theory 28 (2003), 167181CrossRefGoogle Scholar
24.Pflaum, M. J.: The normal symbol on Riemannian manifolds, The New York Journal of Mathematics 4 (1998), 95123Google Scholar
25.Schweitzer, L. B.: A short proof that Mn(A) is local if A is local and Fréchet, Intern. J. Math. 3 (1992), 581589CrossRefGoogle Scholar
26.Shubin, M. A.: Pseudodifferential operators and spectral theory, Springer–Verlag, Berlin–Heidelberg–New York, 1980Google Scholar
27.Swan, R. G.: Topological examples of projective modules, Trans. Amer. Math. Soc. 230 (1977), 201234CrossRefGoogle Scholar
28.Widom, H.: A Complete Symbol Calculus for Pseudodifferential Operators, Bull. Sci. Math. (2) 104 (1980), 1963Google Scholar
29.Wodzicki, M.: Local invariants of spectral asymmetry. Invent. Math. 75 (1984), no. 1, 143177Google Scholar
30.Wodzicki, M.: Excision in cyclic homology and in rational algebraic K-theory. Ann. of Math. (2) 129 (1989), no. 3, 591639CrossRefGoogle Scholar