The present study examined sequence variability in four mitochondrial genes, namely cytochrome c oxidase subunit (cox1), cytochrome b (cytb) and NADH dehydrogenase subunits 1 and 5 (nad1 and nad5), among Bunostomum trigonocephalum isolates from four different geographic regions in China. Ten B. trigonocephalum samples were collected from each of the four provinces (Heilongjiang, Jilin, Shaanxi and Yunnan), China. A part of the cox1 (pcox1), cytb (pcytb), nad1 and nad5 genes (pnad1 and pnad5) were amplified separately from individual hookworms by polymerase chain reaction (PCR) and were subjected to direct sequencing in order to define sequence variations and their phylogenetic relationships. The intra-specific sequence variations within B. trigonocephalum were 0–1.9% for pcox1, 0–2.0% for pcytb, 0–1.6% for pnad1 and 0–1.7% for pnad5. The A+T contents of the sequences were 69.6–70.4% (pcox1), 71.9–72.7 (pcytb), 70.4–71.1% (pnad1) and 72.0–72.6% (pnad5). However, the inter-specific sequence differences among members of the family Ancylostomatidae were significantly higher, being 12.1–14.2% for pcox1, 13.7–16.0 for cytb, 17.6–19.4 for nad1 and 16.0–21.6 for nad5. Phylogenetic analyses based on the combined partial sequences of cox1, cytb, nad1 and nad5 using three inference methods, namely Bayesian inference (Bayes), maximum likelihood (ML) and maximum parsimony (MP), revealed that all the B. trigonocephalum samples form monophyletic groups, but samples from the same geographical origin did not always cluster together, suggesting that there was no obvious geographical distinction within B. trigonocephalum based on sequences of the four mtDNA genes. These results demonstrated the existence of low-level intra-specific variation in mitochondrial DNA (mtDNA) sequences among B. trigonocephalum isolates from different geographic regions.