Published online by Cambridge University Press: 12 April 2024
Abbreviations of the complex life cycle of trematodes, from three to two hosts, have occurred repeatedly and independently among trematode lineages. This is usually facultative and achieved via progenesis: following encystment in the second intermediate host, the metacercaria develops precociously into an egg-producing adult, bypassing the need to reach a definitive host. Given that it provides relatively cheap insurance against a shortage of definitive hosts, it is not clear why facultative progenesis has only evolved in a few taxa. Here a comparative approach is used to test whether progenetic trematodes are characterized by larger body size and egg volumes, two traits that correlate with other key life history features, than other trematodes. These traits may constrain the evolution of progenesis, because precocious maturation might be impossible when the size difference between the metacercaria and a reproductive adult is too large. First, trematode species belonging to genera in which progenesis has been documented were found not to differ significantly from other trematode species. Second, using within-genus paired comparisons across 19 genera in which progenesis has been reported, progenetic species did not differ, with respect to body size or egg size, from their non-progenetic congeners. Third, using intraspecific paired comparisons in species where progenesis is facultative, no difference was observed in the sizes of eggs produced by worms in both the intermediate and definitive host, suggesting that opting for progenesis does not influence the size of a worm's eggs. Overall, the lack of obvious differences in body or egg size between trematodes with truncated life cycles and those with the normal three-host cycle indicates that basic life history characteristics are not acting as constraints on the evolution of progenesis; trematodes of all sizes can do it. Why facultative progenesis is not more widespread remains a mystery.