Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T21:02:43.016Z Has data issue: false hasContentIssue false

Tegumental surface changes in adult Paramphistomum microbothrium (Fischoeder 1901) following in vitro administration of artemether

Published online by Cambridge University Press:  20 August 2009

H.A. Shalaby*
Affiliation:
Department of Parasitology and Animal Diseases, National Research Center, Giza, Egypt
A.H. El Namaky
Affiliation:
Department of Parasitology and Animal Diseases, National Research Center, Giza, Egypt
R.A. Kamel
Affiliation:
Department of Zoology, Girls College for Art, Science and Education, Ain Shams University, Egypt
A.A. Derbala
Affiliation:
Department of Parasitology and Animal Diseases, National Research Center, Giza, Egypt
*
*Fax: 020 3370931 E-mail: [email protected]

Abstract

The treatment of paramphistomiasis, a neglected tropical disease, has been carried out with different fasciolicidal compounds, all showing weak efficacy. Therefore, the search for alternative paramphistomicidal drugs is warranted. In the present study, the in vitro effects of artemether on adult Paramphistomum microbothrium were evaluated, for the first time, using scanning electron microscopy. After 24 h of incubation with 10 μg ml− 1 artemether, tegumental damage of both anterior and posterior ends of the fluke had occurred in the majority of the specimens examined. Sensory papillae surrounding the oral aperture were ruptured, while those at the acetabular region appeared to be sunken due to tegumental swelling. The tegumental disruption became more pronounced and both oral sucker and acetabulum were severely distorted, on increasing the concentration to 20 μg ml− 1. With higher concentration of 30 μg ml− 1, gross swellings of the body of the fluke, clearly visible to the naked eye, were observed, and damage to both oral sucker and acetabulum was so extreme that little recognizable structure remained.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bakke, T.A. (1976a) Shape, size and surface topography of genital organs of Leucochloridium sp. (Digenea), revealed by light and scanning electron microscopy. Zeitschrift fur Parasitenkunde 51, 99113.CrossRefGoogle Scholar
Bakke, T.A. (1976b) Functional morphology and surface topography of Leucochloridium sp. (Digenea), revealed by scanning electron microscopy. Zeitschrift fur Parasitenkunde 51, 115128.CrossRefGoogle Scholar
Bennett, C.E. (1975) Surface features, sensory structures and movement of the newly excysted juvenile Fasciola hepatica L. Journal of Parasitology 61, 886891.CrossRefGoogle ScholarPubMed
Butler, A.R., Gilbert, B.C., Hulme, P., Irvine, L.R., Renton, L. & Whitwood, A.C. (1998) EPR evidence for the involvement of free radicals in the iron-catalyzed decomposition of qinghaosu (artemisinin) and some derivatives; antimalarial action of some polycyclic endoperoxides. Free Radical Research 28, 471476.CrossRefGoogle Scholar
Golenser, J., Waknine, J.H., Krugliak, M., Hunt, N.H. & Grau, G.E. (2006) Current perspectives on the mechanism of action of artemisinins. International Journal for Parasitology 36, 14271441.CrossRefGoogle ScholarPubMed
Halton, D.W. (2004) Microscopy and the helminth parasite. Micron 35, 361390.CrossRefGoogle ScholarPubMed
Hanna, R.E.B. (1980) Fasciola hepatica: an immunofluorescent study of antigenic changes in the tegument during development in the rat and the sheep. Experimental Parasitology 50, 155170.CrossRefGoogle ScholarPubMed
Haynes, R.K. (2006) From artemisinin to new artemisinin antimalarials: biosynthesis, extraction, old and new derivatives, stereochemistry and medicinal chemistry requirements. Current Topics in Medicinal Chemistry 6, 509537.CrossRefGoogle ScholarPubMed
Hegazi, A.G., Abd El-Hady, F.K. & Shalaby, H.A. (2007) An in vitro effect of propolis on adult worms of Fasciola gigantica. Veterinary Parasitology 144, 279286.CrossRefGoogle Scholar
Hiekal, F. & Hilali, M. (1993) Scanning electron microscopy of the tegument of Paramphistomum microbothrium Fischoeder, 1901 and Cotylophoron cotylophorum (Fischoeder 1901) in Egypt. Arab Gulf Journal of Scientific Research 11, 105113.Google Scholar
Ibarra, O.F. & Jenkins, D.C. (1984) An in vitro screen for new fasciolicidal agents. Zeitschrift für Parasitenkunde 70, 655661.CrossRefGoogle Scholar
Ilha, M.R., Loretti, A.P. & Reis, A.C. (2005) Wasting and mortality in beef cattle parasitized by Eurytrema coelamaticum in the state of Parana, southern Brazil. Veterinary Parasitology 133, 4960.CrossRefGoogle ScholarPubMed
Keiser, J. & Morson, G. (2008) Fasciola hepatica: tegumental alterations in adult flukes following in vitro and in vivo administration of artesunate and artemether. Experimental Parasitology 118, 228237.CrossRefGoogle ScholarPubMed
Keiser, J., Brun, R., Fried, B. & Utzinger, J. (2006a) Trematocidal activity of praziquantel and artemisinin derivatives: in vitro and in vivo investigations on adult Echinostoma caproni. Antimicrobial Agents Chemotherapy 50, 803805.CrossRefGoogle ScholarPubMed
Keiser, J., Shu-Hua, X., Tanner, M. & Utzinger, J. (2006b) Artesunate and artemether are effective fasciolicides in the rat model and in vitro. Journal of Antimicrobial Chemotherapy 57, 11391145.CrossRefGoogle ScholarPubMed
Keiser, J., Xiao, S.H., Xue, J., Chang, Z.S., Odermatt, P., Tesana, S., Tanner, M. & Utzinger, J. (2006c) Effect of artesunate and artemether against Clonorchis sinensis and Opisthorchis viverrini in rodent models. International Journal Antimicrobial Agents 28, 370373.CrossRefGoogle ScholarPubMed
Khani, U.J., Tanveerl, A., Maqbool, A. & Masood, S. (2008) Epidemiological studies of paramphistomosis in cattle. Veterinarski Archiv 78, 243251.Google Scholar
Kilani, K., Guillot, J. & Chermette, R. (2003) Amphistomoses digestives. pp. 14001410Principales maladies infectieuses et parasitaires du bétail. Paris, Editions Tec & Doc.Google Scholar
Klayman, D.L. (1985) Qinghaosu (artemisinin): an antimalarial drug from China. Science 228, 10491055.CrossRefGoogle ScholarPubMed
Kloetzel, K. & Lewert, R.M. (1966) Pigment formation in Schistosoma mansoni infections in the white mouse. American Journal of Tropical Medicine and Hygiene 15, 2831.CrossRefGoogle ScholarPubMed
Krishna, S., Bustamanate, L., Haynes, R.L. & Staines, H.M. (2008) Artemisinins: their growing importance in medicine. Trends in Pharmacological Sciences 29, 520527.CrossRefGoogle ScholarPubMed
Nollen, P.M. & Nadakavukaren, M.J. (1974) Megalodiscus temperatus: scanning electron microscopy of the tegumental surfaces. Experimental Parastology 36, 123130.CrossRefGoogle ScholarPubMed
Sey, O. & Abdel-Rahman, M.S. (1975) Studies on Paramphistomum species of cattle and sheep in Egypt. Assiut Veterinary Medical Journal 2, 145149.Google Scholar
Shalaby, H.A., El Namaky, A.H. & Kamel, R.O.A. (2009) In vitro effect of artemether and triclabendazole on adult Fasciola gigantica. Veterinary Parasitology 160, 7682.CrossRefGoogle ScholarPubMed
Skuce, P.J. & Fairweather, I. (1989) Fasciola hepatica: the effect of the sodium ionophore monensin on the adult tegument. Parasitology Research 75, 223232.CrossRefGoogle ScholarPubMed
Skuce, P.J., Anderson, H.R. & Fairweather, I. (1987) The interaction between the deacetylated (amine) metabolite of diamphenethide (DAMD) and cytochemically demonstrable Na+/K+-ATPase activity in the tegument of Fasciola hepatica. Parasitology Research 74, 161167.CrossRefGoogle ScholarPubMed
Spence, S.A., Fraser, G.C., Dettman, E.B. & Battese, D.F. (1992) Production response to internal parasite control in dairy cattle. Australian Veterinary Journal 69, 217220.CrossRefGoogle ScholarPubMed
Spence, S.A., Fraser, G.C. & Chang, S. (1996) Response in milk production to the control of gastro-intestinal nematode and paramphistome parasites in dairy cattle. Australian Veterinary Journal 74, 456459.CrossRefGoogle Scholar
Stitt, A.W. & Fairweather, I. (1993) Fasciola hepatica: tegumental surface changes in adult and juvenile flukes following treatment in vitro with the sulphoxide metabolite of triclabendazole (Fasinex). Parasitology Research 79, 529536.CrossRefGoogle ScholarPubMed
Tandon, V. & Mattra, S.C. (1982) Scanning electron microscopic observations on the tegumental surfaces of two rumen flukes (Trematoda: Paramphistomata). Journal of Helminthology 56, 95104.CrossRefGoogle ScholarPubMed
Threadgold, L.T. (1985) Fasciola hepatica: interaction of the tegument with poly-l-lysine and enzymes. Experimental Parasitology 59, 222230.CrossRefGoogle ScholarPubMed
Utzinger, J. & Keiser, J. (2004) Schistosomiasis and soil-transmitted helminthiasis: common drugs for treatment and control. Expert Opinion on Pharmacotherapy 5, 263285.CrossRefGoogle ScholarPubMed
Utzinger, J. & Keiser, J. (2007) Artemisinins and synthetic trioxolanes in the treatment of helminth infections. Current Opinion in Infectious Diseases 20, 605612.Google Scholar
Utzinger, J., Xiao, S.H., Tanner, M. & Keiser, J. (2007) Artemisinins for schistosomiasis and beyond. Current Opinion in Investigational Drugs 8, 105116.Google ScholarPubMed
Veerakumari, L. & Munuswamy, N. (1999) In vitro studies on the effects of some anthelmintics on Cotylophoron cotylophorum (Digenea, Paramphistomidae): a structural analysis. Cytobios 98, 3957.Google ScholarPubMed
White, N.J. (1996) The treatment of malaria. New England Journal of Medicine 335, 800806.CrossRefGoogle ScholarPubMed
World Health Organization & UNICEF (2003) The Africa Malaria Report 2003 (WHO/CDS/MAL/2003.1093). Geneva, World Health Organization.Google Scholar
Xiao, S., Hotez, P.J. & Tanner, M. (2000) Artemether, an effective new agent for chemoprophylaxis against schistosomiasis in China: its in vivo effect on the biochemical metabolism of the Asian schistosome. Southeast Asian Journal of Tropical Medicine and Public Health 31, 724732.Google Scholar
Xiao, S.H., Chollet, J., Utzinger, J., Matile, H., Mei, J.Y. & Tanner, M. (2001) Artemether administered together with haemin damages schistosomes in vitro. Transactions of the Royal Society of Tropical Medicine and Hygiene 95, 6771.Google ScholarPubMed