Hostname: page-component-cc8bf7c57-ksm4s Total loading time: 0 Render date: 2024-12-12T03:55:00.368Z Has data issue: false hasContentIssue false

Gill ectoparasite assemblages of two non-native Cichla populations (Perciformes, Cichlidae) in Brazilian reservoirs

Published online by Cambridge University Press:  18 August 2010

F.H. Yamada*
Affiliation:
Graduate Course in Ecology of Inland Aquatic Ecosystems, Maringá State University, Maringá, Paraná, Brazil Laboratory of Ichthyoparasitology/NUPELIA, Maringá State University, Maringá, Paraná, Brazil
L.N. Santos
Affiliation:
Department of Ecology and Marine Resources, Federal University of Rio de Janeiro State, Rio de Janeiro, Brazil
R.M. Takemoto
Affiliation:
Graduate Course in Ecology of Inland Aquatic Ecosystems, Maringá State University, Maringá, Paraná, Brazil Laboratory of Ichthyoparasitology/NUPELIA, Maringá State University, Maringá, Paraná, Brazil
*
*Fax: 00 55 44 30114625 E-mail: [email protected]

Abstract

The gills of 41 Cichla piquiti and 39 C. kelberi from Itaipu and Lajes reservoirs, respectively, Brazil, were examined to describe the ectoparasite assemblages of these two non-native peacock-bass populations. All ectoparasite species of the two studied hosts (C. piquiti and C. kelberi) were dominant, but Ascocotyle sp. (metacercariae) was the prevalent (58.53%) and most abundant helminth species in C. piquiti hosts, while Sciadicleithrum ergensi was the dominant species in C. kelberi hosts. Gill ectoparasites of C. piquiti and C. kelberi showed a typical pattern of overdispersion or aggregation, which is commonly reported for many other freshwater fishes. Ectoparasite prevalence and abundance did not vary between host sexes of the two Cichla populations. The prevalence and abundance of Ascocotyle sp. were positively correlated with C. piquiti standard length (SL), but only the abundance of S. ergensi showed a positive correlation with C. kelberi SL. Although environmental differences between reservoirs might also have influenced the results, we anticipated that the presence of a close congener in Itaipu reservoir and the lack of other Cichla species in Lajes reservoir were the key factors to explain the contrasts between C. piquiti and C. kelberi gill ectoparasites. Overall, our results suggest that the trend of parasite species loss through the invasion process may have contributed to the establishment of non-native C. piquiti and C. kelberi populations in Brazilian reservoirs.

Type
Regular research papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agostinho, A.A., Thomaz, S.M. & Gomes, L.C. (2005) Conservation of the biodiversity of Brazil's inland waters. Conservation Biology 19, 646652.CrossRefGoogle Scholar
Araujo, C.S.O., Barros, M.C., Gomes, A.L.S., Varella, A.M.B., Viana, G.M., Silva, N.P., Fraga, E.C. & Andrade, S.M.S. (2009) Parasitas de populações naturais e artificiais de tucunaré (Cichla spp.). Revista Brasileira de Parasitologia Veterinária 18, 3438.CrossRefGoogle ScholarPubMed
Bell, G. & Burt, A. (1991) The comparative biology of parasite species diversity: internal helminthes of freshwater fish. Journal of Animal Ecology 60, 10471063.CrossRefGoogle Scholar
Bush, A.O. & Holmes, J.C. (1986) Intestinal helminths of lesser scaup ducks: an interactive community. Canadian Journal of Zoology 64, 142152.CrossRefGoogle Scholar
Bush, A.O., Aho, J.M. & Kennedy, C.R. (1990) Ecological versus phylogenetic determinants of helminth parasite community richness. Evolutionary Ecology 4, 120.CrossRefGoogle Scholar
Bush, A.O., Lafferty, K.D., Lotz, J.M. & Shostak, A.W. (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology 83, 575583.CrossRefGoogle Scholar
Caswell, H. (1978) Predator-mediated coexistence: a nonequilibrium model. American Naturalist 112, 127154.CrossRefGoogle Scholar
Eiras, J.C., Takemoto, R.M. & Pavanelli, G.C. (2006) Métodos de Estudo e Técnicas Laboratoriais em Parasitologia de Peixes. 2nd edn.305 pp. Maringá, Eduem.Google Scholar
Esch, G.W., Kennedy, C.R., Bush, A.O. & Aho, J.M. (1988) Patterns in helminth communities in freshwater fish in Great Britain: alternative strategies for colonization. Parasitology 96, 519532.CrossRefGoogle ScholarPubMed
Espínola, L.A. & Júlio-Júnior, H.F. (2007) Espécies invasoras: conceitos, modelos e atributos. Interciencia 32, 580585.Google Scholar
Guégan, J.F. & Hugueny, B. (1994) A nested parasite species subset pattern in tropical fish – host as major determinant of parasite infracommunity structure. Oecologia 100, 184189.CrossRefGoogle ScholarPubMed
Guégan, J.F. & Kennedy, C.R. (1993) Maximum local helminth parasite community richness in British freshwater fish: a test of the colonization time hypothesis. Parasitology 106, 91100.CrossRefGoogle Scholar
Hanski, I. (1982) Dynamics of regional distribution: the core and satellite species hypothesis. Oikos 38, 210221.CrossRefGoogle Scholar
Keenleyside, M.H.A. (1991) Parental care. pp. 191208in Keenleyside, M.H.A. (Ed.) Cichid fishes: Behaviour, ecology and evolution. London, Chapman & Hall.Google Scholar
Kennedy, C.R. & Bush, A.O. (1994) The relationship between pattern and scale in parasite communities: a stranger in a strange land. Parasitology 109, 187196.CrossRefGoogle Scholar
Kritsky, D.C., Thatcher, V.E. & Boeger, W.A. (1989) Neotropical Monogenea. 15. Dactylogyrids from the gills of Brazilian Cichlidae with proposal of Sciadicleithrum gen. n. (Dactylogyridae). Proceedings of the Helminthological Society of Washington 56, 128140.Google Scholar
Kullander, S.O. & Ferreira, E.J.G. (2006) A review of the South American cichlid genus Cichla, with descriptions of nine new species (Teleostei: Cichlidae). Ichthyological Exploration of Freshwaters 17, 289398.Google Scholar
Lizama M. de los, A.P., Takemoto, R.M. & Pavanelli, G.C. (2005) Influence of host sex and age on infracommunities of metazoan parasites of Prochilodus lineatus (Valenciennes, 1836) (Prochilodantidae) of the Upper Paraná river floodplain, Brazil. Parasite 12, 299304.CrossRefGoogle Scholar
Lizama M. de los, A.P., Takemoto, R.M., Ranzani-Paiva, M.J.T., Ayroza, L.M.S. & Pavanelli, G.C. (2007) Relação parasito-hospedeiro em peixes de pisciculturas da região de Assis, Estado de São Paulo, Brasil. 1. Oreochromis niloticus (Linnaeus, 1757). Acta Scientiarum Biological Science 29, 223231.Google Scholar
Lowe-McConnell, R.L. (1975) Fish communities in tropical freshwaters. 337 pp. London, Longman.Google Scholar
Lowe-McConnell, R.H. (1991) Ecology of cichlids in South American and African Waters, excluding the African Great Lakes. pp. 6085in Keenleyside, M.H.A. (Ed.) Cichid fishes: Behaviour, ecology and evolution. London, Chapman & Hall.Google Scholar
Ludwig, J.A. & Reynolds, J.F. (1988) Statistical ecology: a primer on methods and computing. 352 pp. New York, Wiley-Interscience Publications.Google Scholar
Machado, P.M., Almeida, S.C., Pavanelli, G.C. & Takemoto, R.M. (2000) Ecological aspects of endohelminths parasitizing Cichla monoculus Spix, 1831 (Perciformes: Cichlidae) in the Paraná River near Porto Rico, State of Paraná, Brazil. Comparative Parasitology 67, 210217.Google Scholar
Martins, M.L., Mello, A., Paiva, F.C., Fujimoto, R.Y., Schalch, S.H.C. & Colombano, N.C. (2002) Prevalência, sazonalidade e intensidade de infecção por Diplostomum (Austrodiplostomum) compactum compactum Lutz, 1928 (Digenea, Diplostomidae), em peixes do reservatório de Volta Grande, Estado de Minas Gerais, Brasil. Acta Scientiarum Biological Science 24, 469474.Google Scholar
Martins, M.L., Pereira, J. Jr, De Chambrier, A. & Yamashita, M.M. (2009a) Proteocephalid cestode infection in alien fish, Cichla piquiti Kullander and Ferreira, 2006 (Osteichthyes: Cichlidae), from Volta Grande reservoir, Minas Gerais, Brazil. Brazilian Journal of Biology 69, 189195.CrossRefGoogle ScholarPubMed
Martins, M.L., Santos, R.S., Marengoni, N.G., Takahashi, H.K. & Onaka, E.M. (2009b) Seasonality of Eustrongylides sp. (Nematoda: Dioctophymatidae) larvae in fishes from Paraná river, South-Western Brazil. Boletin do Instituto de Pesca 35, 2937.Google Scholar
Oliveira, V.F., Oliveira, A.V., Prioli, A.J. & Prioli, S.M.A. (2006) Obtaining 5S rDNA molecular markers for native and invasive Cichla populations (Perciformes – Cichlidae), in Brazil. Acta Scientiarum Biological Science 30, 8389.Google Scholar
Poulin, R. (2004) Macroecological patterns of species richness in parasite assemblages. Basic and Applied Ecology 5, 423434.CrossRefGoogle Scholar
Rohde, K. (1980) Diversity gradients of marine Monogenea in the Atlantic and Pacific Oceans. Cellular and Molecular Life Sciences 36, 13681369.CrossRefGoogle Scholar
Rohde, K. (1993) Ecology of marine parasites. An introduction to marine parasitology. 298 pp. United Kingdom, CAB International.Google Scholar
Rohde, K., Hayward, C. & Heap, M. (1995) Aspects of the ecology of metazoan ectoparasites of marine fishes. International Journal for Parasitology 25, 945970.CrossRefGoogle ScholarPubMed
Santos, A.F.G.N., Santos, L.N. & Araujo, F.G. (2004) Water level influences on condition of Geophagus brasiliensis (Perciformes, Cichlidae) in a Brazilian oligotrophic reservoir. Neotropical Ichthyology 2, 151156.CrossRefGoogle Scholar
Santos, A.F.G.N., Santos, L.N., García-Berthou, B. & Hayashi, C. (2009) Could native predators help to control invasive fishes? Microcosm experiments with the Neotropical characid, Brycon orbignyanus. Ecology of Freshwater Fish 18, 491499.CrossRefGoogle Scholar
Santos, L.N., Araujo, F.G. & Brotto, D.S. (2008) Artificial structures as tools for fish habitat rehabilitation in a neotropical reservoir. Aquatic Conservation 18, 896908.CrossRefGoogle Scholar
Santos, R.S., Pimenta, F.D.A., Martins, M.L., Takahashi, H.K. & Marengoni, N.G. (2002) Metacercárias Diplostomum (Austrodiplostomum) compactum Lutz, 1928 (Digenea, Diplostomidae) em peixes do rio Paraná, Brasil. Prevalência, sazonalidade e intensidade de infecção. Acta Scientiarum Biological Science 24, 475480.Google Scholar
Shafland, P.L. (1996) An overview of Florida's introduced butterfly peacockbass (Cichla ocellaris) sportfishery. Natura Caracas 96, 2629.Google Scholar
Shotter, R.A. (1976) The distribution of some helminth and copepod parasites in tissues of whiting Merlangus merlangus L. from Manx water. Journal of Fish Biology 8, 101117.CrossRefGoogle Scholar
Simková, A., Morand, S., Matejusová, P.J. & Gelnar, M. (2001) Local and regional influences on patterns of parasite species richness of central European fishes. Biodiversity and Conservation 10, 511525.CrossRefGoogle Scholar
Stone, J.E. & Pence, D.B. (1978) Ecology of helminth parasitism in the bobcat from West Texas. Journal of Parasitology 64, 295302.CrossRefGoogle ScholarPubMed
Takemoto, R.M. & Pavanelli, G.C. (1996) Proteocephalidean cestodes in the freshwater fish Cichla monoculus from the Paraná River, Brazil. Studies on Neotropical Fauna and Environment 31, 123127.CrossRefGoogle Scholar
Thatcher, V.E. (2006) Amazon fish parasites. Vol. 1. 2nd edn.508 pp. Sofia-Moscow, Pensoft Publishers.Google Scholar
Torchin, M.E., Lafferty, K.D. & Kuris, A.M. (2002) Parasites and marine invasions. Parasitology 124, 137151.CrossRefGoogle Scholar
Winemiller, K.O. (2001) Ecology of peacock cichlids (Cichla spp.) in Venezuela. Journal Aquariculture and Aquatic Sciences 9, 93112.Google Scholar
Zar, J.H. (1996) Biostatistical analysis. 3rd edn.662 pp. New Jersey, Prentice Hall.Google Scholar