It is proved that a critical level, at which a wave packet is neither reflected nor transmitted, can exist only if the wave normal curve, which is formed by taking the cross-section through the wave normal surface in the plane of propagation, possesses an asymptote which is parallel to the direction of variation of the properties of the medium through which the wave packet moves. This condition, when applied to various types of hydromagnetic waves (such as hydromagnetic waves of the inertial or gravity type, or slow magnetoacoustic waves), shows that critical levels for such waves can exist only if the direction of spatial variations of the medium is perpendicular to the ambient magnetic field. Provided that the angle between the gravitational acceleration, or the rotation axis, and the magnetic field is not zero, hydromagnetic critical levels, characteristic of the gravity or inertial type, act like ‘valves’ in the sense that the wave packet can pierce the critical level from one side and is captured from the other side. It is also pointed out that critical-level behaviour is to some extent a consequence of the WKBJ approximation since the other limit, namely when the waves feel an almost discontinuous behaviour in the properties of the medium, gives markedly different results, particularly in the presence of streaming, which can give rise to the phenomenon of wave amplification.