This is an experimental and numerical study of steady free convection in a porous medium, a system dominated by a single non-linear process, the advection of heat. The paper presents results on three topics: (1) a system uniformly heated from below, for which the flow is cellular, as in the analogous Bénard-Rayleigh flows, (ii) the role of end-effects, and (iii) the role of mass discharge. Measurements of heat transfer are used to establish further the validity of the numerical scheme proposed by the author (1966a), while the other flows allow a more extensive study of the numerical scheme under various boundary conditions. The results are very satisfactory even though only moderately non-linear problems can be treated at present.
The main new results are as follows. For the Rayleigh-type flow, above a critical Rayleigh number of about 40, the heat transferred across the layer is proportional to the square of the temperature difference across the layer and is independent of the thermal conductivity of the medium or the depth of the layer. This result is modified when the boundary-layer thickness is comparable to the grain size of the medium. The investigation of end-effects reveals variations in horizontal wave-number and a pronounced hysteresis and suggests an alternative explanation of some observations by Malkus (1954).