The problem considered is that of the steady motion of a series of neutrally buoyant, flat-faced, rigid, cylindrical capsules along the axis of a pipeline under the influence of a hydraulic pressure gradient. The Navier-Stokes equations are non-dimensionalized and expressed in central-difference form. Numerical solutions are found by the method of relaxation for Reynolds numbers up to 20 000 and a close agreement is obtained with readings from a laboratory apparatus for Reynolds numbers up to 2200.
The flow is examined in detail and the existence of toroidal vortices between successive capsules is demonstrated. Their shape is shown to be increasingly influenced by inertial forces as the Reynolds number increases, but the overall pressure gradient is not greatly dependent on the Reynolds number.