The subject is the small-scale structure of a magnetic field in a turbulent conducting fluid, ‘small scale’ meaning lengths much smaller than the characteristic dissipative length of the turbulence. Philip Saffman developed an approximation to describe this structure and its evolution in time. Its usefulness invites a closer examination of the approximation itself and an attempt to place sharper limits on the numerical parameters that appear in the approximate correlation functions, topics to which the present paper is addressed.
A Lagrangian approach is taken, wherein one makes a Fourier decomposition of the magnetic field in a neighbourhood that follows a fluid element. If one construes the viscous-convective range narrowly, by ignoring magnetic dissipation entirely, then results for a magnetic field in two dimensions are consistent with Saffman's approximation, but in three dimensions no steady state could be found. Thus, in three dimensions, turbulent amplification seems to be more effective than Saffman's approximation implies. The cause seems to be a matter of geometry, not of correlation times or relative time scales.
Strictly-outward spectral transfer is a characteristic of Saffman's approximation, and this may be an accurate description only when dissipation suppresses the contributions from inwardly directed spectral transfer. In the spectral region where dominance passes from convection to dissipation, one can generate expressions for the parameters that arise in Saffman's approximation. Their numerical evaluation by computer simulation may enable one to sharpen the limits that Saffman had already set for those parameters.