This paper describes a new balance, suitable for direct measurement of skin friction in turbulent boundary layers with severe pressure gradients. The gaps between the floating element and the surrounding wall are filled with a liquid in order to eliminate disturbing pressure forces on the element. The resulting friction forces are measured with piezo-electric transducers with high sensitivity and extremely small element displacement.
Skin friction measurements were taken in the turbulent boundary layer of a wind tunnel with circular cross-section at M [les ] 0·25. Severe adverse pressure gradients were generated by means of a step on the wall or, alternatively, by a conical centre body.
The new apparatus was mainly used to investigate the error of Preston tubes in adverse pressure gradients. It was necessary to develop a new measuring technique to improve the repeatability of the Preston tube readings.
The Preston tube error was found to depend on both the local pressure gradient P = (dp/dx) ν/ρ3τ and on the Preston tube diameter uτd/ν and to be independent of the upstream pressure distribution for the range of parameters covered by the experiments.