The steady, inviscid, axisymmetric, rotating flow past a circular disk in an unbounded liquid is determined on the hypothesis that all streamlines originate in a uniform flow far upstream of the body. The characteristic parameter for the flow is k = 2ωa/U, where ω and U are the angular and axial velocities of the basic flow and α is the radius of the disk. Forward separation is found to occur for k > k = 1.9, in agreement with observation (Orloff & Bossel 1971). The length of the upstream separation bubble is determined on the hypothesis that the previous solution remains valid for k > k, despite the existence of closed streamlines within the upstream separation bubble (which may, but do not necessarily, inva,lidate the solution). This length increases rapidly for k > 3, in qualitative agreement with observation. The hypothesis of unseparated flow implies a singularity at the rim of the disk, just as in potential flow. The strength of this singularity departs only slightly from its potential-flow value for 0 ≤ k ≤ 2, but increases rapidly with k for k > 3, which suggests that (quite apart from the difficulties implied by the existence of closed streamlines) the solution cannot remain valid for sufficiently large k.