This paper deals with a two-dimensional turbulent boundary layer disturbed by a circular cylinder. The cylinder was placed inside or outside the boundary layer with its axis parallel to the wall and normal to the flow direction. The mean velocity, wall shear stress, longitudinal turbulent intensity, autocorrelations and turbulent length scale were measured and here the relaxation features of the disturbed boundary layer are discussed. The measurements were made for a ratio of the cylinder diameter d to the undisturbed boundary-layer thickness δ0 equal to 0·30 and for three values of the ratio of the height h of the cylinder axis to δ0 equal to 0·222, 0·556 and 1·24.
The results show that the near-wall region of the disturbed boundary layer recovers much more quickly than the outer region and that in the case h/δ0 = 0·222 the recovery is faster than in other cases, as reported by Clauser (1956). Moreover, it is found that the fluctuating velocity field recovers more slowly than the mean velocity field, and that the characteristics of the turbulence in the outer region are still close to those in the wake of an isolated cylinder at the last measurement station, although the mean velocity profile has almost completely returned to its natural shape.