Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-13T22:33:50.522Z Has data issue: false hasContentIssue false

Water waves excited by near-impulsive wind forcing

Published online by Cambridge University Press:  04 September 2017

Andrey Zavadsky
Affiliation:
School of Mechanical Engineering, Tel-Aviv University, Tel-Aviv, Israel
Lev Shemer*
Affiliation:
School of Mechanical Engineering, Tel-Aviv University, Tel-Aviv, Israel
*
Email address for correspondence: [email protected]

Abstract

Only limited information is currently available on the evolution of waves generated by wind that varies in time, and in particular on the initial stages of wind–wave growth from rest under a suddenly applied wind forcing. The emerging wind–wave field varies in time as well as in space. Detailed knowledge of wave parameter distributions under those conditions contributes to a better understanding of the mechanisms of wind wave generation. In the present study, the instantaneous surface elevation and two components of the instantaneous surface slope were recorded at various fetches in a small-scale experimental facility under nearly impulsive wind forcing. Numerous independent realizations have been recorded for each selection of operational conditions. Sufficient data at a number of fetches were accumulated to calculate reliable ensemble-averaged statistical parameters of the evolving random wind–wave field as a function of the time elapsed from activation of wind forcing. Distinct stages in the wave evolution process from appearance of initial ripples to emergence of a quasi-steady wind–wave field were identified. The experimental results during each stage of evolution were analysed in view of the viscous instability theory by Kawai (J. Fluid Mech., vol. 93, 1979, pp. 661–703) and the resonance model by Phillips (J. Fluid Mech., vol. 2, 1957, pp. 417–445).

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Annenkov, S. Y. & Shrira, V. I. 2011 Evolution of wave turbulence under gusty forcing. Phys. Rev. Lett. 107, 114502.CrossRefGoogle ScholarPubMed
Annenkov, S. Y. & Shrira, V. I. 2013 Large-time evolution of statistical moments of wind–wave fields. J. Fluid Mech. 726, 517546.CrossRefGoogle Scholar
Belcher, S. E. & Hunt, J. C. R. 1993 Turbulent shear flow over slowly moving waves. J. Fluid Mech. 251, 109148.CrossRefGoogle Scholar
Belcher, S. E. & Hunt, J. C. R. 1998 Turbulent flow over hills and waves. Annu. Rev. Fluid Mech. 30, 507538.CrossRefGoogle Scholar
Benjamin, T. B. 1959 Shearing flow over a wavy boundary. J. Fluid Mech. 6, 161205.CrossRefGoogle Scholar
Carslaw, H. S. & Jaeger, J. C. 1959 Conduction of Heat in Solids, 2nd edn. pp. 7576. Clarendon.Google Scholar
Caulliez, G. & Collard, F. 1999 Three-dimensional evolution of wind waves from gravity-capillary to short gravity range. Eur. J. Mech. (B/Fluids) 18, 389402.CrossRefGoogle Scholar
Caulliez, G., Makin, V. & Kudryavtsev, V. 2008 Drag of the water surface at very short fetches: observations and modeling. J. Phys. Oceanogr. 38, 20382055.CrossRefGoogle Scholar
Caulliez, G., Ricci, N. & Dupont, R. 1998 The generation of the first visible wind waves. Phys. Fluids 10, 757759.CrossRefGoogle Scholar
Crapper, G. D. 1957 An exact solution for progressive capillary waves of arbitrary amplitude. J. Fluid Mech. 2, 532540.CrossRefGoogle Scholar
Donelan, M. A. & Plant, W. J. 2009 A threshold for wind–wave growth. J. Geophys. Res. 114, C07012.CrossRefGoogle Scholar
Druzhinin, O. A., Troitskaya, Y. I. & Zilitinkevich, S. S. 2012 Direct numerical simulation of a turbulent wind over a wavy water surface. J. Geophys. Res. 117, C00J05.CrossRefGoogle Scholar
Ebuchi, N., Kawamura, H. & Toba, Y. 1987 Fine structure of laboratory wind–wave surfaces studied using an optical method. Boundary-Layer Meteor. 39 (1–2), 133151.CrossRefGoogle Scholar
Fedorov, A. V. & Melville, W. K. 1998 Nonlinear gravity–capillary waves with forcing and dissipation. J. Fluid Mech. 354, 142.CrossRefGoogle Scholar
van Gastel, K., Janssen, P. A. E. M. & Komen, G. J. 1985 On phase velocity and growth rate of wind-induced gravity-capillary waves. J. Fluid Mech. 161, 199216.CrossRefGoogle Scholar
Giovanangeli, J.-P. & Memponteil, A. 1985 Resonant and non-resonant waves excited by periodic vortices in airflow over water. J. Fluid Mech. 159, 6984.CrossRefGoogle Scholar
Grare, L., Peirson, W. L., Brangert, H., Walker, J. W., Giovanangeli, J.-P. & Makin, V. 2013 Growth and dissipation of wind-forced, deep-water waves. J. Fluid Mech. 722, 550.CrossRefGoogle Scholar
Hatori, M. 1984 Nonlinear properties of laboratory wind waves at energy containing frequencies. J. Oceanogr. 40, 111.Google Scholar
von Helmholtz, H. 1868 über discontinuirliche flüssigkeits-bewegungen. Akademie der Wissenschaften zu Berlin.Google Scholar
Huang, N. E. & Long, S. R. 1980 An experimental study of the surface elevation probability distribution and statistics of wind-generated waves. J. Fluid Mech. 101, 179200.CrossRefGoogle Scholar
Hwang, P. A., García-Nava, H. & Ocampo-Torres, F. J. 2011 Observations of wind wave development in mixed seas and unsteady wind forcing. J. Phys. Oceanogr. 41, 23432362.CrossRefGoogle Scholar
Hwang, P. A. & Wang, D. W. 2004 Field measurements of duration-limited growth of wind-generated ocean surface waves at young stage of development. J. Phys. Oceanogr. 34, 23162326.2.0.CO;2>CrossRefGoogle Scholar
Janssen, P. A. E. M. 1986 The period-doubling of gravity–capillary waves. J. Fluid Mech. 172, 531546.CrossRefGoogle Scholar
Jeffreys, H. 1925 On the formation of water waves by wind. Proc. R. Soc. Lond. A 107, 189206.Google Scholar
Kahma, K. K. & Donelan, M. A. 1988 A laboratory study of the minimum wind speed for wind wave generation. J. Fluid Mech. 192, 339364.CrossRefGoogle Scholar
Kawai, S. 1979 Generation of initial wavelets by instability of a coupled shear flow and their evolution to wind waves. J. Fluid Mech. 93, 661703.CrossRefGoogle Scholar
Kelvin, Lord 1871 Hydrokinetic solutions and observations. Phil. Mag. 42, 362377.Google Scholar
Kudryavtsev, V. & Chapron, B. 2016 On growth rate of wind waves: impact of short-scale breaking modulations. J. Phys. Oceanogr. 46, 349360.CrossRefGoogle Scholar
Kudryavtsev, V., Chapron, B. & Makin, V. 2014 Impact of wind waves on the air–sea fluxes: a coupled model. J. Geophys. Res. 119, 12171236.CrossRefGoogle Scholar
Kudryavtsev, V., Shrira, V., Dulov, V. & Malinovsky, V. 2008 On the vertical structure of wind-driven sea currents. J. Phys. Oceanogr. 38, 21212144.CrossRefGoogle Scholar
Kudryavtsev, V. N. & Makin, V. K. 2002 Coupled dynamics of short waves and the airflow over long surface waves. J. Geophys. Res. 107, 3209.CrossRefGoogle Scholar
Lange, P. A., Jähne, B., Tschiersch, J. & Ilmberger, I. 1982 Comparison between an amplitude-measuring wire and a slope-measuring laser water wave gauge. Rev. Sci. Instrum. 53, 651655.CrossRefGoogle Scholar
Larson, T. R. & Wright, J. W. 1975 Wind-generated gravity-capillary waves: laboratory measurements of temporal growth rates using microwave backscatter. J. Fluid Mech. 70, 417436.CrossRefGoogle Scholar
Liberzon, D. & Shemer, L. 2011 Experimental study of the initial stages of wind waves’ spatial evolution. J. Fluid Mech. 681, 462498.CrossRefGoogle Scholar
Melville, W. K., Shear, R. & Veron, F. 1998 Laboratory measurements of the generation and evolution of langmuir circulations. J. Fluid Mech. 364, 3158.CrossRefGoogle Scholar
Miles, J. 2001 A note on surface waves generated by shear-flow instability. J. Fluid Mech. 447, 173177.CrossRefGoogle Scholar
Miles, J. W. 1957 On the generation of surface waves by shear flows. J. Fluid Mech. 3, 185204.CrossRefGoogle Scholar
Miles, J. W. 1959 On the generation of surface waves by shear flows. Part 2. J. Fluid Mech. 6, 568582.CrossRefGoogle Scholar
Miles, J. W. 1962 On the generation of surface waves by shear flows. Part 4. J. Fluid Mech. 13, 433448.CrossRefGoogle Scholar
Miles, J. W. 1993 Surface-wave generation revisited. J. Fluid Mech. 256, 427441.CrossRefGoogle Scholar
Milewski, P. A., Tabak, E. G. & Vanden-Eijnden, E. 2002 Resonant wave interaction with random forcing and dissipation. Stud. Appl. Maths 108 (1), 123144.CrossRefGoogle Scholar
Mitsuyasu, H. & Rikiishi, K. 1978 The growth of duration-limited wind waves. J. Fluid Mech. 85, 705730.CrossRefGoogle Scholar
Paquier, A., Moisy, F. & Rabaud, M. 2015 Surface deformations and wave generation by wind blowing over a viscous liquid. Phys. Fluids 27, 122103.CrossRefGoogle Scholar
Phillips, O. M. 1957 On the generation of waves by turbulent wind. J. Fluid Mech. 2, 417445.CrossRefGoogle Scholar
Phillips, W. R. C. 2005 On the spacing of langmuir circulation in strong shear. J. Fluid Mech. 525, 215236.CrossRefGoogle ScholarPubMed
Plant, W. J. 1982 A relationship between wind stress and wave slope. J. Geophys. Res. 87, 19611967.CrossRefGoogle Scholar
Plant, W. J. & Wright, J. W. 1977 Growth and equilibrium of short gravity waves in a wind–wave tank. J. Fluid Mech. 82, 767793.CrossRefGoogle Scholar
Teixeira, M. A. C. & Belcher, S. E. 2006 On the initiation of surface waves by turbulent shear flow. Dyn. Atm. Oceans 41, 127.CrossRefGoogle Scholar
Troitskaya, Y. I., Sergeev, D. A., Kandaurov, A. A., Baidakov, G. A., Vdovin, M. A. & Kazakov, V. I. 2012 Laboratory and theoretical modeling of air–sea momentum transfer under severe wind conditions. J. Geophys. Res. 117, C00J21.CrossRefGoogle Scholar
Uz, B. M., Donelan, M. A., Hara, T. & Bock, E. J. 2002 Laboratory studies of wind stress over surface waves. Boundary-Layer Meteor. 102, 301331.CrossRefGoogle Scholar
Uz, B. M., Hara, T., Bock, E. J. & Donelan, M. A. 2003 Laboratory observations of gravity-capillary waves under transient wind forcing. J. Geophys. Res. 108, 3050.CrossRefGoogle Scholar
Valenzuela, G. R. 1976 The growth of gravity-capillary waves in a coupled shear flow. J. Fluid Mech. 76, 229250.CrossRefGoogle Scholar
Veron, F. & Melville, W. K. 2001 Experiments on the stability and transition of wind-driven water surfaces. J. Fluid Mech. 446, 2565.CrossRefGoogle Scholar
Waseda, T., Toba, Y. & Tulin, M. P. 2001 Adjustment of wind waves to sudden changes of wind speed. J. Oceanogr. 57, 519533.CrossRefGoogle Scholar
Wu, J. 1975 Wind-induced drift currents. J. Fluid Mech. 68, 4970.CrossRefGoogle Scholar
Yang, D., Meneveau, C. & Shen, L. 2013 Dynamic modelling of sea-surface roughness for large-eddy simulation of wind over ocean wavefield. J. Fluid Mech. 726, 6299.CrossRefGoogle Scholar
Zavadsky, A., Benetazzo, A. & Shemer, L. 2017 On the two-dimensional structure of short gravity waves in a wind wave tank. Phys. Fluids 29 (1), 016601.CrossRefGoogle Scholar
Zavadsky, A., Liberzon, D. & Shemer, L. 2013 Statistical analysis of the spatial evolution of the stationary wind wave field. J. Phys. Oceanogr. 43, 6579.CrossRefGoogle Scholar
Zavadsky, A. & Shemer, L. 2012 Characterization of turbulent air flow over evolving water-waves in a wind wave tank. J. Geophys. Res. 117, C00J19.CrossRefGoogle Scholar
Zavadsky, A. & Shemer, L. 2017 Investigation of statistical parameters of the evolving wind wave field using a laser slope gauge. Phys. Fluids 29 (5), 056602.CrossRefGoogle Scholar