Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T09:43:06.414Z Has data issue: false hasContentIssue false

Viscoelastic effects on the jetting–dripping transition in co-flowing capillary jets

Published online by Cambridge University Press:  08 August 2008

J. M. MONTANERO
Affiliation:
Departamento de Ingeniería Mecánica, Energética y de los Materiales, Universidad de Extremadura, E-06071 Badajoz, Spain
A. M. GAÑÁN-CALVO
Affiliation:
Departamento de Ingeniería Aeroespacial y Mecánica de Fluidos, Universidad de Sevilla, E-41092 Sevilla, Spain

Abstract

Linear hydrodynamics stability analysis is used to determine the influence of elasticity on the jetting–dripping transition and on the temporal stability of non-axisymmetric modes in co-flowing capillary jets. The critical Weber number for which axisymmetric perturbations undergo a transition from convective to absolute instability is calculated from the spatio-temporal analysis of the dispersion relation for Oldroyd-B liquids, as a function of the density and viscosity ratios, and the Reynolds and Deborah numbers. Elasticity increases the critical Weber number for all cases analysed and, consequently, fosters the transition from jetting to dripping. The temporal analysis of the dispersion relation for the m = 1 lateral mode shows that elasticity does not affect its stability.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anna, S. L. & Mayer, H. C. 2006 Microscale tipstreaming in a microfluidic flow focusing device. Phys. Fluids. 18, 121512.CrossRefGoogle Scholar
Basaran, O. A. 2002 Small-scale free surface flows with breakup: Drop formation and emerging applications. AIChE J. 48, 18421848.CrossRefGoogle Scholar
Bauer, H. F. 1986 Free surface and interface oscillations of an infinitely long visco-elastic liquid column. Acta Astronautica 13, 922.CrossRefGoogle Scholar
Brenn, G., Liu, Z. & Durst, F. 2000 Linear analysis of the temporal instability of axisymmetrical non-Newtonian liquid jets. Intl J. Multiphase Flow 26, 16211644.CrossRefGoogle Scholar
Briggs, R. J. 1964 Electron-Stream Interaction with Plasmas. MIT Press.CrossRefGoogle Scholar
Cohen, I. & Nagel, S. R. 2002 Scaling at the selective withdrawal transition through a tube suspended above the fluid surface. Phys. Rev. Lett. 88, 074501.CrossRefGoogle ScholarPubMed
Coullet, P. & Mahadevan, L. 2005 Hydrodynamical models for the chaotic dripping faucet. J. Fluid Mech. 526, 117.CrossRefGoogle Scholar
Eggers, J. & Villermaux, E. 2008 Physics of liquid jets. Rep. Prog. Phys. 71 036601.CrossRefGoogle Scholar
Eggleton, C. D., Tsai, T.-M. & Stebe, K. J. 2001 Tip streaming from a drop in the presence of surfactants. Phys. Rev. Lett. 87, 048302.CrossRefGoogle ScholarPubMed
Funada, T. & Joseph, D. D. 2003 Viscoelastic potential flow analysis of capillary instability. J. Non-Newtonian Fluid Mech. 111, 87105.CrossRefGoogle Scholar
Gañán-Calvo, A. M. 1998 Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams. Phys. Rev. Lett. 80, 285288.CrossRefGoogle Scholar
Gañán-Calvo, A. M., González-Prieto, R., Riesco-Chueca, P., Herrada, M. A. & Flores-Mosquera, M. 2007 Focusing capillary jets close to the continuum limit. Nature Physics 3, 737742.CrossRefGoogle Scholar
Guillot, P., Colin, A., Utada, A. S. & Ajdari, A. 2007 Stability of a jet in confined pressure-driven biphasic flows at low Reynolds numbers. Phys. Rev. Lett. 99, 104502.CrossRefGoogle ScholarPubMed
Huerre, P. & Monkewitz, P. A. 1990 Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22, 473537.CrossRefGoogle Scholar
Joseph, D. D. 1990 Fluid Dynamics of Viscoelastic Flows. Springer.CrossRefGoogle Scholar
Leib, S. J. & Goldstein, M. E. 1986 The generation of capillary instabilities on a liquid jet. J. Fluid Mech. 168, 479500.CrossRefGoogle Scholar
Lin, S. P. 2003 Breakup of Liquid Sheets and Jets. Cambridge University Press.CrossRefGoogle Scholar
Liu, Z. & Liu, Z. 2006 Linear analysis of three-dimensional instability of non-Newtonian liquid jets. J. Fluid Mech. 559, 451459.CrossRefGoogle Scholar
Montanero, J. M. & Gañán-Calvo, A. M. 2008 Stability of coflowing capillary jets under nonaxisymmetric perturbations. Phys. Rev. E 77, 046301.Google ScholarPubMed
de la Mora, J. F. 2007 The fluid dynamics of Taylor cones. Annu. Rev. Fluid Mech. 39, 217243.CrossRefGoogle Scholar
van Saarloos, W. 1987 Dynamical velocity selection: Marginal stability. Phys. Rev. Lett. 58, 25712574.CrossRefGoogle Scholar
van Saarloos, W. 2003 Front propagation into unstable states. Phys. Rep. 386, 29222.CrossRefGoogle Scholar
Schroll, R. D., Wunenburger, R., Casner, A., Zhang, W. W. & Delville, J.-P. 2007 Liquid transport due to light scattering. Phys. Rev. Lett. 98, 133601.CrossRefGoogle ScholarPubMed
Stone, H. A., Stroock, A. D. & Adjari, A. 2004 Engineering flows in small devices: Microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381411.CrossRefGoogle Scholar
Suryo, R. & Basaran, O. A. 2006 Tip streaming from a liquid drop forming from a tube in a co-flowing outer fluid. Phys. Fluids 18, 082102.CrossRefGoogle Scholar
Taylor, G. I. 1934 The formation of emulsions in definable fields of flow. Proc. R. Soc. Lond. A 146, 501523.Google Scholar
Zhou, C., Yue, P. & Feng, J. J. 2006 Formation of simple and compound drops in microfluidic devices. Phys. Fluids 18, 092105.CrossRefGoogle Scholar