Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T07:55:32.877Z Has data issue: false hasContentIssue false

A two-phase two-layer model for fluidized granular flows with dilatancy effects

Published online by Cambridge University Press:  19 July 2016

François Bouchut*
Affiliation:
Université Paris-Est, Laboratoire d’Analyse et de Mathématiques Appliquées (UMR 8050)CNRS, UPEM, UPEC, F-77454, Marne-la-Vallée, France
Enrique D. Fernández-Nieto
Affiliation:
Departamento de Matemática Aplicada I, Universidad de Sevilla. E.T.S. Arquitectura. Avda, Reina Mercedes, s/n. 41012 Sevilla, Spain
Anne Mangeney
Affiliation:
Université Paris Diderot, Sorbone Paris Cité, Institut de Physique du Globe de Paris, Equipe de Sismologie, 1 rue Jussieu, 75005 Paris, France ANGE team, INRIA, CETMEF, Lab. J.-Louis Lions, Paris, France
Gladys Narbona-Reina
Affiliation:
Departamento de Matemática Aplicada I, Universidad de Sevilla. E.T.S. Arquitectura. Avda, Reina Mercedes, s/n. 41012 Sevilla, Spain
*
Email address for correspondence: [email protected]

Abstract

We propose a two-phase two-thin-layer model for fluidized debris flows that takes into account dilatancy effects, based on the closure relation proposed by Roux & Radjai (Physics of Dry Granular Media, 1998, Springer, pp. 229–236). This relation implies that the occurrence of dilation or contraction of the granular material depends on whether the solid volume fraction is respectively higher or lower than a critical value. When dilation occurs, the fluid is sucked into the granular material, the pore pressure decreases and the friction force on the granular phase increases. On the contrary, in the case of contraction, the fluid is expelled from the mixture, the pore pressure increases and the friction force diminishes. To account for this transfer of fluid into and out of the mixture, a two-layer model is proposed with a fluid layer on top of the two-phase mixture layer. Mass and momentum conservation are satisfied for the two phases, and mass and momentum are transferred between the two layers. A thin-layer approximation is used to derive average equations, with accurate asymptotic expansions. Special attention is paid to the drag friction terms that are responsible for the transfer of momentum between the two phases and for the appearance of an excess pore pressure with respect to the hydrostatic pressure. For an appropriate form of dilatancy law we obtain a depth-averaged model with a dissipative energy balance in accordance with the corresponding three-dimensional initial system.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, T. B. & Jackson, R. 1967 A fluid mechanical description of fluidized beds. Ind. Engng Chem. Fundam. 6, 527539.CrossRefGoogle Scholar
Andreini, N., Ancey, C. & Epely-Chauvin, G. 2013 Granular suspension avalanches. II: plastic regime. Phys. Fluids 25, 033302.CrossRefGoogle Scholar
Andreotti, B., Forterre, Y. & Pouliquen, O. 2011 Les milieux granulaires. In Physique Savoirs Actuels. EDP Sciences.Google Scholar
Beavers, G. S. & Joseph, D. D. 1967 Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197207.CrossRefGoogle Scholar
Bolton, M. D. 1986 The strength and dilatancy of sands. Gèotechnique 36, 6578.Google Scholar
Bouchut, F. & Boyaval, S. 2016 Unified derivation of thin-layer reduced models for shallow free-surface gravity flows of viscous fluids. Eur. J. Mech. (B/Fluids) 55, 116131.Google Scholar
Bouchut, F., Fernández-Nieto, E. D., Mangeney, A. & Narbona-Reina, G. 2015 A two-phase shallow debris flow model with energy balance. ESAIM: Math. Modelling Numer. Anal. 49, 101140.CrossRefGoogle Scholar
Bouchut, F., Mangeney-Castelnau, A., Perthame, B. & Vilotte, J.-P. 2003 A new model of Saint Venant and Savage–Hutter type for gravity driven shallow water flows. C. R. Acad. Sci. Paris série I 336, 531536.Google Scholar
Bouchut, F. & Westdickenberg, M. 2004 Gravity driven shallow water models for arbitrary topography. Commun. Math. Sci. 2, 359389.CrossRefGoogle Scholar
Brenner, H. 2009 Bi-velocity hydrodynamics, multicomponent fluids. Intern. J. Engng Sci. 47, 902929.Google Scholar
Brenner, H. 2010 Diffuse volume transport in fluids. Phys. A 389, 40264045.Google Scholar
Cassar, C., Nicolas, M. & Pouliquen, O. 2005 Submarine granular flows down inclined planes. Phys. Fluids 17, 103301.Google Scholar
Da Cruz, F., Emam, S., Prochnow, M., Roux, J.-N. & Chevoir, F. 2005 Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72, 021309.Google ScholarPubMed
Fernández-Nieto, E. D., Bouchut, F., Bresch, D., Castro Díàz, M. J. & Mangeney, A. 2008 A new Savage–Hutter type model for submarine avalanches and generated tsunami. J. Comput. Phys. 227, 77207754.Google Scholar
Forterre, Y. & Pouliquen, O. 2008 Flows of dense granular media. Annu. Rev. Fluid Mech. 40, 124.CrossRefGoogle Scholar
GDR MiDi group 2004 On dense granular flows. Eur. Phys. J. E 14, 341365.Google Scholar
George, D. L. & Iverson, R. M.2011 A two-phase debris-flow model that includes coupled evolution of volume fractions, granular dilatancy, and pore-fluid pressure. In 5th International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment Padua, Italy, 14–17 June 2011: Italian J. Engng Geology Environ, pp. 415–424. Universita La Sapienza.Google Scholar
George, D. L. & Iverson, R. M. 2014 A depth-averaged debris-flow model that includes the effects of evolving dilatancy. II: numerical predictions and experimental tests. Proc. R. Soc. Lond. A 470, 20130820.Google Scholar
Gray, J. M. N. T. & Edwards, A. N. 2014 A depth-averaged 𝜇(I)-rheology for shallow granular free-surface flows. J. Fluid Mech. 755, 503534.Google Scholar
Iverson, R. M. 1997 The physics of debris flows. Rev. Geophys. 35, 245296.Google Scholar
Iverson, R. M. 2000 Landslide triggering by rain infiltration. Water Resour. Res. 36, 18971910.Google Scholar
Iverson, R. M. 2005 Regulation of landslide motion by dilatancy and pore pressure feedback. J. Geophys. Res. 110, F02015.CrossRefGoogle Scholar
Iverson, R. M. 2009 Elements of an improved model of debris-flow motion. In Powders and Grains, American Institute of Physics, Proceedings, vol. 1145, pp. 916.Google Scholar
Iverson, R. M. & George, D. L. 2014 A depth-averaged debris-flow model that includes the effects of evolving dilatancy. I: physical basis. Proc. R. Soc. Lond. A 470, 20130819.Google Scholar
Iverson, R. M. & George, D. L. 2016 Modelling landslide liquefaction, mobility bifurcation and the dynamics of the 2014 Oso disaster. Gèotechnique 66, 175187.Google Scholar
Iverson, R. M., Logan, M., LaHusen, R. G. & Berti, M. 2010 The perfect debris flow? Aggregated results from 28 large-scale experiments. J. Geophys. Res. 115, F03005.Google Scholar
Jackson, R. 1983 Some Mathematical and Physical Aspects of Continuum Models for the Motion of Granular Materials, in Theory of Dispersed Multiphase Flow. Proceedings of an Advanced Seminar, Conducted by the Mathematics Research Center, the University of Wisconsin–Madison, 26–28 May 1982 (ed. Meyer, R. E.), pp. 291337. Academic.Google Scholar
Jackson, R. 2000 The Dynamics of Fluidized Particles. (Cambridge Monographs on Mechanics) , Cambridge University Press.Google Scholar
Kowalski, J. & McElwaine, J. N. 2013 Shallow two-component gravity-driven flows with vertical variation. J. Fluid Mech. 714, 434462.Google Scholar
Lee, C. H., Huang, C. J. & Chiew, Y. M. 2015 A three-dimensional continuum model incorporating static and kinetic effects for granular flows with applications to collapse of a two-dimensional granular column. Phys. Fluids 27, 113303.CrossRefGoogle Scholar
Lhuillier, D. 2009 Migration of rigid particles in non-Brownian viscous suspensions. Phys. Fluids 21, 023302.CrossRefGoogle Scholar
Mitchell, J. K. 1993 Fundamentals of Soil Behaviours. Wiley.Google Scholar
Montserrat, S., Tamburrino, A., Roche, O. & Niño, Y. 2012 Pore fluid pressure diffusion in defluidizing granular columns. J. Geophys. Res. 117, F02034.Google Scholar
Morales de Luna, T. 2008 A Saint Venant model for gravity driven shallow water flows with variable density and compressibility effects. Math. Comput. Model. 47, 436444.Google Scholar
Morris, J. F. & Boulay, F. 1999 Curvilinear flows of non-colloidal suspensions: the role of normal stresses. J. Rheol. 43, 12131237.Google Scholar
Nott, P. R., Guazzelli, E. & Pouliquen, O. 2011 The suspension balance model revisited. Phys. Fluids 23, 043304.Google Scholar
Pailha, M., Nicolas, M. & Pouliquen, O. 2008 Initiation of underwater granular avalanches: influence of the initial volume fraction. Phys. Fluids 20, 111701.Google Scholar
Pailha, M. & Pouliquen, O. 2009 A two-phase flow description of the initiation of underwater granular avalanches. J. Fluid Mech. 633, 115135.CrossRefGoogle Scholar
Pelanti, M., Bouchut, F. & Mangeney, A. 2008 A Roe-type scheme for two-phase shallow granular flows over variable topography. ESAIM: Math. Modelling Numer. Anal. 42, 851885.Google Scholar
Penel, Y., Dellacherie, S. & Després, B. 2015 Coupling strategies for compressible-low Mach number flows. Math. Models Meth. Appl. Sci. 25, 10451089.CrossRefGoogle Scholar
Pitman, E. B. & Le, L. 2005 A two-fluid model for avalanche and debris flows. Phil. Trans. R. Soc. Lond. A 363, 15731601.Google ScholarPubMed
Reynolds, O. 1885 On the dilatancy of media composed of rigid particles in contact. Phil. Mag. 5 20, 469481.Google Scholar
Richardson, J. F. & Zaki, W. N. 1954 Sedimentation and fluidization: Part I. Trans. Inst. Chem. Engrs 32, 3553.Google Scholar
Rondon, L., Pouliquen, O. & Aussillous, P. 2011 Granular collapse in a fluid: role of the initial volume fraction. Phys. Fluids 23, 073301.CrossRefGoogle Scholar
Roux, S. & Radjai, F. 1998 Texture-dependent rigid plastic behaviour. In Physics of Dry Granular Media (ed. Herrmann, H. J. et al. ), NATO ASI Series, vol. 350, pp. 229236. Springer.CrossRefGoogle Scholar
Savage, S. B. & Hutter, K. 1989 The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 199, 177215.CrossRefGoogle Scholar
Schaeffer, D. G. & Iverson, R. 2008 Steady and intermittent slipping in a model of landslide motion regulated by pore-pressure feedback. SIAM J. Appl. Maths 69, 768786.Google Scholar
Schofield, A. N. & Wroth, C. P. 1968 Critical State Soil Mechanics. McGraw-Hill Inc.Google Scholar
Vardoulakis, I. 1986 Dynamic stability analysis of undrained simple shear on water-saturated granular soils. Intl J. Numer. Anal. Mech. Geomech. 10, 177190.CrossRefGoogle Scholar
Wood, D. M. 1990 Soil Behavior and Critical State Soil Mechanics. Cambridge University Press.Google Scholar