Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-20T17:35:46.042Z Has data issue: false hasContentIssue false

Two-phase modelling of submarine granular flows with shear-induced volume change and pore-pressure feedback

Published online by Cambridge University Press:  25 November 2020

Cheng-Hsien Lee*
Affiliation:
Department of Marine Environment and Engineering, National Sun Yat-sen University, Kaohsiung80424, Taiwan
*
Email address for correspondence: [email protected]

Abstract

Two important issues that arise when using an Eulerian–Eulerian two-phase model to simulate submarine granular flows have not been addressed well: the shear-induced volume change and the resultant pore-pressure feedback. This study develops a multiphase model with a novel evolution equation to determine the static solid pressure resulting from prolonged contact between particles. The evolution equation can effectively describe the relaxation process of the static solid pressure and the shear-induced volume change in plane-shear configurations. Additionally, the evolution equation allows the present model to capture two typical phenomena associated with pore-pressure feedback: the time delay of the initiating submarine granular flows and the different collapse processes for differently packed columns.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bolton, M. D. 1986 The strength and dilatancy of sands. Géotechnique 36 (1), 6578.CrossRefGoogle Scholar
Bouchut, F., Fernández-Nieto, E. D., Mangeney, A. & Narbona-Reina, G. 2016 A two-phase two-layer model for fluidized granular flows with dilatancy effects. J. Fluid Mech. 801, 166221.CrossRefGoogle Scholar
Boyer, F., Guazzelli, E. & Pouliquen, O. 2011 Unifying suspension and granular rheology. Phys. Rev. Lett. 107 (18), 188301.CrossRefGoogle ScholarPubMed
Burcharth, H. F. & Andersen, O. H. 1995 On the one-dimensional steady and unsteady porous flow equation on the one-dimensional steady and unsteady porous flow equations. Coast. Engng 24 (94), 233257.CrossRefGoogle Scholar
Campbell, C. S. 2006 Granular material flows – an overview. Powder Technol. 162 (3), 208229.CrossRefGoogle Scholar
Cassar, C., Nicolas, M. & Pouliquen, O. 2005 Submarine granular flows down inclined planes. Phys. Fluids 17 (10), 103301.CrossRefGoogle Scholar
Chauchat, J., Cheng, Z., Nagel, T., Bonamy, C. & Hsu, T.-J. 2017 SedFoam-2.0: a 3-D two-phase flow numerical model for sediment transport. Geosci. Model Develop. 105194, 43674392.CrossRefGoogle Scholar
Chialvo, S., Sun, J. & Sundaresan, S. 2012 Bridging the rheology of granular flows in three regimes. Phys. Rev. E 85 (2), 21305.CrossRefGoogle ScholarPubMed
Engelund, F. 1953 On the Laminar and Turbulent Flows of Ground Water through Homogeneous Sand. Danish Academy of Technical Sciences.Google Scholar
George, D. L. & Iverson, R. M. 2014 A depth-averaged debris-flow model that includes the effects of evolving dilatancy. I. Physical basis. Phil. Trans. R. Soc. Lond. A 470 (2170), 20130820.Google Scholar
Hampton, M. A., Lee, H. J. & Locat, J. 1996 Submarine landslides. Rev. Geophys. 34 (1), 3359.CrossRefGoogle Scholar
Higuera, P., Lara, J. L. & Losada, I. J. 2014 Three-dimensional interaction of waves and porous coastal structures using OpenFOAM (R). Part 1. Formulation and validation. Coast. Engng 83, 243258.CrossRefGoogle Scholar
Houssais, M. & Jerolmack, D. J. 2017 Toward a unifying constitutive relation for sediment transport across environments. Geomorphology 277, 251264.CrossRefGoogle Scholar
Hsu, S.-K., Kuo, J., Lo, C.-L., Tsai, C.-H., Doo, W.-B., Ku, C.-Y. & Sibuet, J.-C. 2008 Turbidity currents, submarine landslides and the 2006 pingtung earthquake off SW Taiwan. Terr. Atmos. Ocean. Sci. 19 (6), 767772.CrossRefGoogle Scholar
Huang, Z. & Lee, C.-H. 2018 Modeling of fluid-solid two-phase geophysical flows. In Advanced Computational Fluid Dynamics for Emerging Engineering Processes - Eulerian vs. Lagrangian (ed. Kim, A. S.), pp. 125. IntechOpen.Google Scholar
Ionescu, I. R., Mangeney, A. & Roche, O. 2015 Viscoplastic modelling of granular column collapse with pressure dependent rheology. J. Non-Newtonian Fluid Mech. 219, 118.CrossRefGoogle Scholar
Iverson, R. M., Reid, M. E., Iverson, N. R., LaHusen, R. G., Logan, M., Mann, J. E. & Brien, D. L. 2000 Acute sensitivity of landslide rates to initial soil porosity. Science 290 (20), 513516.CrossRefGoogle ScholarPubMed
Jasak, H. 2009 OpenFOAM: open source CFD in research and industry. Intl J. Nav. Arch. Ocean 1, 8994.Google Scholar
Ji, S. & Shen, H. H. 2008 Internal parameters and regime map for soft polydispersed granular materials. J. Rheol. 52, 87103.CrossRefGoogle Scholar
Jop, P., Forterre, Y. & Pouliquen, O. 2006 A constitutive law for dense granular flows. Nature 441 (7094), 727730.CrossRefGoogle ScholarPubMed
Lee, C.-H. & Huang, Z. 2018 A two-phase flow model for submarine granular flows: with an application to collapse of deeply-submerged granular columns. Adv. Water Resour. 115, 286300.CrossRefGoogle Scholar
Lee, C.-H., Huang, Z. & Chiew, Y.-M. 2015 A three-dimensional continuum model incorporating static and kinetic effects for granular flows with applications to collapse of a two-dimensional granular column. Phys. Fluids 27 (11), 113303.CrossRefGoogle Scholar
Lee, C.-H., Huang, Z. & Yu, M.-L. 2018 Collapse of submerged granular columns in loose packing: experiment and two-phase flow simulation. Phys. Fluids 30 (12), 123307.CrossRefGoogle Scholar
Lee, C.-H., Low, Y. M. & Chiew, Y.-M. 2016 Multi-dimensional rheology-based two-phase model for sediment transport and applications to sheet flow and pipeline scour. Phys. Fluids 28 (5), 053305.CrossRefGoogle Scholar
McSaveney, M., Goff, J., Darby, D., Goldsmith, P., Barnett, A., Elliott, S. & Nongkas, M. 2000 The 17th July 1998 Tsunami, Sissano Lagoon, Papua New Guinea-evidence and initial interpretation. Mar. Geol. 170, 8192.CrossRefGoogle Scholar
Mulder, T. & Alexander, J. 2001 The physical character of subaqueous sedimentary density flow and their deposits. Sedimentology 48 (2), 269299.CrossRefGoogle Scholar
OpenCFD 2014 The Open Source CFD Toolbox: Programmer's Guide.Google Scholar
Pailha, M., Nicolas, M. & Pouliquen, O. 2008 Initiation of underwater granular avalanches: influence of the initial volume fraction. Phys. Fluids 20, 1821.CrossRefGoogle Scholar
Pailha, M. & Pouliquen, O. 2009 A two-phase flow description of the initiation of underwater granular avalanches. J. Fluid Mech. 633, 115135.CrossRefGoogle Scholar
Papanastasiou, T. C. 1987 Flows of materials with yield. J. Rheol. 31, 385404.CrossRefGoogle Scholar
Pouliquen, O. & Forterre, Y. 2009 A non-local rheology for dense granular flows. Phil. Trans. R. Soc. Lond. A 367 (1909), 50915107.Google ScholarPubMed
Richardson, J. F. & Zaki, W. N. 1954 Sedimentation and fluidisation. Part 1. Chem. Engng Res. Des. 32, S82S100.Google Scholar
Rondon, L., Pouliquen, O. & Aussillous, P. 2011 Granular collapse in a fluid: role of the initial volume fraction. Phys. Fluids 23, 73301.CrossRefGoogle Scholar
Roux, S. & Radjai, F. 1997 Texture-dependent rigid plastic behaviour. In Physics of Dry Granular Media (ed. Hermann, H. J., Hovi, J. P. & Luding, S.), pp. 305311. NATO ASI Series.Google Scholar
Si, P., Shi, H. & Yu, X. 2018 Development of a mathematical model for submarine granular flows. Phys. Fluids 30 (8), 083302.CrossRefGoogle Scholar
Sun, J. & Sundaresan, S. 2011 A constitutive model with microstructure evolution for flow of rate-independent granular materials. J. Fluid Mech. 682, 590616.CrossRefGoogle Scholar
Trulsson, M., Andreotti, B. & Claudin, P. 2012 Transition from the viscous to inertial regime in dense suspensions. Phys. Rev. Lett. 109 (11), 118305.CrossRefGoogle ScholarPubMed