Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-18T23:47:07.078Z Has data issue: false hasContentIssue false

Turbulent stirring in an experimental induction furnace

Published online by Cambridge University Press:  20 April 2006

E. Taberlet
Affiliation:
INPG – GIS Madylam B.P. 68, 38402 Grenoble Cedex. France
Y. Fautrelle
Affiliation:
INPG – GIS Madylam B.P. 68, 38402 Grenoble Cedex. France

Abstract

This paper describes an experimental study of the electromagnetic stirring in a mercury induction furnace. The 200 mm-diameter furnace is supplied with a single-phase electric current of frequency 50–4700 Hz. The flow pattern is measured by means of a special two-wire probe, which tracks the thermal wake behind a hot-film probe. The magnitudes of fluctuating velocities are measured by hot-film anemometry. Attention is focused on the influence on the mean and turbulent motion of the electromagnetic-skin depth, which is determined by the supply frequency. The measurements of the mean motion show that, for a fixed magnetic field, stirring is maximum when the value of the skin depth normalized by the pool radius is about 0.2, in agreement with previous theoretical predictions. Two turbulence regimes may be distinguished for different frequency ranges. At low frequency the various properties of the turbulence, such as the mean-square fluctuations, the integral scales and the turbulent dissipation rate, are almost uniform over the whole bath. However, at high frequency the turbulence is non-uniform; there is an increase in the turbulent fluctuations and dissipation rate and a decrease of the integral scale within the electromagnetic-skin depth near the wall.

Type
Research Article
Copyright
© 1985 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barbier, J. N., Fautrelle, Y. R., Evans, J. W. & Cremer, P. 1982 J. Méc. Théor. Appl. 1, 533556.
Batchelor, G. K. 1956 J. Fluid Mech. 1, 177.
Bednarz, T. K. 1970 Ph.D. Thesis, Carnegie Mellon University, Pittsburgh U.S.A.
Champagne, F. H. 1978 J. Fluid Mech. 86, 67108.
Cremer, P. & Alemany, A. 1981 J. Méc. Appl. 5, 3750.
Fautrelle, Y. 1981 J. Fluid Mech. 102, 405430.
Hinze, J. O. 1975 Turbulence 2nd edn. MacGraw-Hill.
Koanda, S. & Fautrelle, Y. R. 1984 Modelling of coreless induction furnace: some theoretical and experimental results. In Proc. IUTAM Symp. on Metallurgical Applications of MHD (1982) Cambridge (UK). Institute of Metals, London.
Lillicrap, D. C. & Moore, D. J. 1982 In Proc. Electroheat for metal conference, Cambridge, U.K.
Lumley, J. L. 1965 Phys. Fluids 8, 10561062.
Moore, D. J. & Hunt, J. C. R. 1983 Liquid metal flows and magnetohydrodynamics. Ed. N. Branover, and A. Yakhot. Prog. Astronautics & Aeronautics 84, 359.Google Scholar
Moore, D. J. & Hunt, J. C. R. 1984 Turbulence and unsteadiness in the coreless induction furnace. In Proc IUTAM Symp. on Metallurgical Applications of MHD (1982) Cambridge (UK). Inst. of Metals, London.
Robinson, T. & Larsson, K. 1973 J. Fluid Mech. 60, 641664.
Sneyd, A 1971 J. Fluid Mech. 49, 817.
Taberlet, E. 1984 Thèse de Docteur Ingénieur INPG, Grenoble.
Tarapore, E. D. & Evans, J. W. 1976 Met. Trans. B 7B, 345351.
Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. The MIT Press.
Trakas, C. 1982 Thèse de Docteur Ingénieur, CNAM.
Trakas, C., Tabeling, P. & Chabrerie, J. P. 1984 J. Méc. Théor. Appl. 3, 345370.