Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T12:41:46.735Z Has data issue: false hasContentIssue false

Turbulent erosion of a stably stratified fluid as a test of intermittency models

Published online by Cambridge University Press:  20 April 2006

William H. Press
Affiliation:
Department of Physics and Center for Astrophysics, Harvard University

Abstract

As a model for the erosion of a stably stratified fluid by an overlying turbulent region, the rate of advance of the mixing interface is calculated in terms of the probability distribution for eddies as a function of their size and velocity. Predicted rates of advance are then evaluated for two current models of intermittency in small-scale turbulence. Compared to available experimental data, one intermittency model, the β-model, is found to be in good agreement, while the other, the log-normal hypothesis, is discordant; unfortunately, the Reynolds number of the existing experiments is not large enough to yield a definitive test. At higher Re, similar experiments might be a useful complement to the alternative of measuring high-order moments. Some related experiments are suggested to test the model and measure the fractal dimension D.

Type
Research Article
Copyright
© 1981 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cromwell, T. 1960 J. Mar. Res. 18, 73.
Flatté, S. M., Dashen, R., Munk, W. H., Watson, K. M. & Zachariasen, F. 1979 Sound Transmission through a Fluctuating Ocean. Cambridge University Press.
Frisch, U., Sulem, P.-L. & Nelkin, M. 1978 J. Fluid Mech. 87, 719.
Garrett, C. & Munk, W. H. 1979 Ann. Rev. Fluid Mech. 11, 339.
Grant, H. L., Moilliet, A. & Vogel, W. M. 1968 J. Fluid Mech. 34, 443.
Gurvich, A. S. & Yaglom, A. M. 1967 Breakdown of eddies and probability distributions for small-scale turbulence. Phys. Fluids Suppl. 10, 59.Google Scholar
Kantha, L. & Phillips, O. M. 1977 J. Fluid Mech. 79, 753.
Kato, H. & Phillips, O. M. 1969 J. Fluid Mech. 37, 643.
Kolmogorov, A. N. 1941 C. r. Acad. Sci. U.R.S.S. 30, 299; 31, 538; 32, 16.
Kolmogorov, A. N. 1962 J. Fluid Mech. 13, 82.
Mandelbrot, B. B. 1972 In Statistical Models and Turbulence (ed. M. Rosenblatt & C. Van Atta), Lecture Notes in Physics, vol. 12. Springer.
Mandelbrot, B. B. 1976 In Turbulence and Navier-Stokes Equation (ed. R. Temam). Lecture Notes in Mathematics, vol. 565. Springer.
Nelkin, M. 1981 Phys. Fluids (submitted).
Niiler, P. P. 1975 J. Mar. Res. 33, 405.
Novikov, E. A. & Stewart, R. W. 1964 Izv. Akad. Nauk. S.S.S.R., Ser. Geofiz. 3, 408.
Obukhov, A. M. 1962 J. Fluid Mech. 12, 77.
Phillips, O. M. 1977 The Dynamics of the Upper Ocean, 2nd ed. Cambridge University Press.
Pollard, R. T., Rhines, P. B. & Thompson, R. 1973 Geophys. Fluid Dyn. 3, 381.
Rose, H. A. & Sulem, P.-L. 1978 J. de Phys. 39, 441.
Rouse, H. & Dodu, J. 1955 Houille Blanche 10, 522.
Thompson, S. M. 1969 Turbulent interfaces generated by an oscillating grid in a stable stratified fluid. Ph.D. dissertation, University of Cambridge.
Turner, J. S. 1968 J. Fluid Mech. 33, 639.
Turner, J. S. 1973 Buoyancy Effects in Fluids. Cambridge University Press.
Van Atta, C. W. & Antonia, R. A. 1980 Phys. Fluids 23, 252.
Yaglom, A. M. 1966 Sov. Phys. Dokl. 11, 26.