Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T05:40:44.777Z Has data issue: false hasContentIssue false

Theory of nonlinear acoustic forces acting on inhomogeneous fluids

Published online by Cambridge University Press:  11 April 2022

Varun Kumar Rajendran
Affiliation:
Department of Mechanical Engineering, Indian Institute of Information Technology, Design and Manufacturing, Kancheepuram, Chennai 600127, India
Sujith Jayakumar
Affiliation:
Department of Mechanical Engineering, Indian Institute of Information Technology, Design and Manufacturing, Kancheepuram, Chennai 600127, India
Mohammed Azharudeen
Affiliation:
Department of Mechanical Engineering, Indian Institute of Information Technology, Design and Manufacturing, Kancheepuram, Chennai 600127, India
Karthick Subramani*
Affiliation:
Department of Mechanical Engineering, Indian Institute of Information Technology, Design and Manufacturing, Kancheepuram, Chennai 600127, India
*
Email address for correspondence: [email protected]

Abstract

Recently, the phenomena of streaming suppression and relocation of inhomogeneous miscible fluids under acoustic fields were explained using the hypothesis on mean Eulerian pressure. In this work, we derive the expression for the acoustic body force without relying on any prior assumptions regarding the second-order Eulerian pressure. We present a theory of nonlinear acoustics for inhomogeneous fluids from first principles, which explains streaming suppression and acoustic relocation in both miscible and immiscible inhomogeneous fluids inside a microchannel. This theory predicts the relocation of higher impedance fluids to pressure nodes of the standing wave, which agrees with recent experiments.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahmed, D., Ozcelik, A., Bojanala, N., Nama, N., Upadhyay, A., Chen, Y., Hanna-Rose, W. & Huang, T.J. 2016 Rotational manipulation of single cells and organisms using acoustic waves. Nat. Commun. 7, 11085.CrossRefGoogle ScholarPubMed
Augustsson, P., Karlsen, J.T., Su, H.-W., Bruus, H. & Voldman, J. 2016 Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping. Nat. Commun. 7, 11556.CrossRefGoogle ScholarPubMed
Augustsson, P., Magnusson, C., Nordin, M., Lilja, H. & Laurell, T. 2012 Microfluidic, label-free enrichment of prostate cancer cells in blood based on acoustophoresis. Anal. Chem. 84 (18), 79547962.CrossRefGoogle ScholarPubMed
Baasch, T., Doinikov, A.A. & Dual, Jürg 2020 Acoustic streaming outside and inside a fluid particle undergoing monopole and dipole oscillations. Phys. Rev. E 101 (1), 013108.CrossRefGoogle ScholarPubMed
Baudoin, M. & Thomas, J.-L. 2020 Acoustic tweezers for particle and fluid micromanipulation. Annu. Rev. Fluid Mech. 52 (1), 205234.CrossRefGoogle Scholar
Bergmann, P.G. 2005 The wave equation in a medium with a variable index of refraction. J. Acoust. Soc. Am. 17 (4), 329333.CrossRefGoogle Scholar
Bradley, C.E. 1998 Acoustic streaming field structure: the influence of the radiator. J. Acoust. Soc. Am. 100 (3), 13991408.CrossRefGoogle Scholar
Bruus, H. 2011 Acoustofluidics 2: perturbation theory and ultrasound resonance modes. Lab on a Chip 12 (1), 2028.CrossRefGoogle ScholarPubMed
Chen, Z., Pei, Z., Zhao, X., Zhang, J., Wei, J. & Hao, N. 2021 Acoustic microreactors for chemical engineering. Chem. Engng J. 433, 133258.CrossRefGoogle Scholar
Collins, D.J., Morahan, B., Garcia-Bustos, J., Doerig, C., Plebanski, M. & Neild, A. 2015 Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves. Nat. Commun. 6, 8686.CrossRefGoogle ScholarPubMed
Deshmukh, S., Brzozka, Z., Laurell, T. & Augustsson, P. 2014 Acoustic radiation forces at liquid interfaces impact the performance of acoustophoresis. Lab on a Chip 14 (17), 33943400.CrossRefGoogle ScholarPubMed
Eckart, C. 1948 Vortices and streams caused by sound waves. Phys. Rev. 73 (1), 6876.CrossRefGoogle Scholar
Faraday, M. 1831 XVII. On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces. Phil. Trans. R. Soc. Lond. 121, 299340.Google Scholar
Freitas, C.J. 2002 The issue of numerical uncertainty. Appl. Math. Model. 26 (2), 237248.CrossRefGoogle Scholar
Friend, J. & Yeo, L.Y. 2011 Microscale acoustofluidics: microfluidics driven via acoustics and ultrasonics. Rev. Mod. Phys. 83 (2), 647704.CrossRefGoogle Scholar
Gautam, G.P., Gurung, R., Fencl, F.A. & Piyasena, M.E. 2018 Separation of sub-micron particles from micron particles using acoustic fluid relocation combined with acoustophoresis. Anal. Bioanal. Chem. 410 (25), 65616571.CrossRefGoogle ScholarPubMed
Hamilton, M.F., Ilinskii, Y.A. & Zabolotskaya, E.A. 2003 Acoustic streaming generated by standing waves in two-dimensional channels of arbitrary width. J. Acoust. Soc. Am. 113 (1), 153160.CrossRefGoogle ScholarPubMed
Hemachandran, E., Hoque, S.Z., Laurell, T. & Sen, A.K. 2021 Reversible stream drop transition in a microfluidic coflow system via on demand exposure to acoustic standing waves. Phys. Rev. Lett. 127 (13), 134501.CrossRefGoogle Scholar
Hemachandran, E., Karthick, S., Laurell, T. & Sen, A.K. 2019 Relocation of coflowing immiscible liquids under acoustic field in a microchannel. Europhys. Lett. 125 (5), 54002.CrossRefGoogle Scholar
Karlsen, J.T. 2018 Theory of nonlinear acoustic forces acting on fluids and particles in microsystems. In DTU Research Database. PhD Thesis, Technical University of Denmark.Google Scholar
Karlsen, J.T., Augustsson, P. & Bruus, H. 2016 Acoustic force density acting on inhomogeneous fluids in acoustic fields. Phys. Rev. Lett. 117 (11), 114504.CrossRefGoogle ScholarPubMed
Karlsen, J.T. & Bruus, H. 2017 Acoustic tweezing and patterning of concentration fields in microfluidics. Phys. Rev. Appl. 7 (3), 034017.CrossRefGoogle Scholar
Karlsen, J.T., Qiu, W., Augustsson, P. & Bruus, H. 2018 Acoustic streaming and its suppression in inhomogeneous fluids. Phys. Rev. Lett. 120 (5), 054501.CrossRefGoogle ScholarPubMed
King, L.V. 1934 On the acoustic radiation pressure on spheres. Proc. R. Soc. Lond. A - Math. Phys. Sci. 147 (861), 212240.Google Scholar
Kumar, V., Azharudeen, M., Pothuri, C. & Subramani, K. 2021 Heat transfer mechanism driven by acoustic body force under acoustic fields. Phys. Rev. Fluids 6 (7), 073501.CrossRefGoogle Scholar
Landau, L.D. & Lifshitz, E.M. 1987 Fluid Mechanics. Pergamon.Google Scholar
Lee, K., Shao, H., Weissleder, R. & Lee, H. 2015 Acoustic purification of extracellular microvesicles. ACS Nano 9 (3), 23212327.CrossRefGoogle ScholarPubMed
Li, P. & Huang, T.J. 2019 Applications of acoustofluidics in bioanalytical chemistry. Anal. Chem. 91 (1), 757767.CrossRefGoogle ScholarPubMed
Li, P., et al. 2015 Acoustic separation of circulating tumor cells. Proc. Natl Acad. Sci. USA 112 (16), 49704975.CrossRefGoogle ScholarPubMed
Lighthill, S.J. 1978 Acoustic streaming. J. Sound Vib. 61 (3), 391418.CrossRefGoogle Scholar
Muller, P.B. & Bruus, H. 2014 Numerical study of thermoviscous effects in ultrasound-induced acoustic streaming in microchannels. Phys. Rev. E 90 (4), 043016.CrossRefGoogle ScholarPubMed
Nath, A. & Sen, A.K. 2019 Acoustic behavior of a dense suspension in an inhomogeneous flow in a microchannel. Phys. Rev. Appl. 12 (5), 054009.CrossRefGoogle Scholar
Nyborg, W.L. 2005 Acoustic streaming near a boundary. J. Acoust. Soc. Am. 30 (4), 329.CrossRefGoogle Scholar
Pavlic, A. & Dual, Jürg 2021 On the streaming in a microfluidic Kundt's tube. J. Fluid Mech. 911, A28.CrossRefGoogle Scholar
Petersson, F., Åberg, L., Swärd-Nilsson, A.-M. & Laurell, T. 2007 Free flow acoustophoresis microfluidic-based mode of particle and cell separation. Anal. Chem. 79 (14), 51175123.CrossRefGoogle ScholarPubMed
Phillips, T.S. & Roy, C.J. 2014 Richardson extrapolation-based discretization uncertainty estimation for computational fluid dynamics. Trans. ASME J. Fluids Engng 136 (12), 121401.CrossRefGoogle Scholar
Pothuri, C., Azharudeen, M. & Subramani, K. 2019 Rapid mixing in microchannel using standing bulk acoustic waves. Phys. Fluids 31 (12), 122001.CrossRefGoogle Scholar
Qiu, W., Karlsen, J.T., Bruus, H. & Augustsson, P. 2019 Experimental characterization of acoustic streaming in gradients of density and compressibility. Phys. Rev. Appl. 11 (2), 024018.CrossRefGoogle Scholar
Rayleigh, Lord 1884 On the circulation of air observed in Kundt's tubes, and on some allied acoustical problems. Phil. Trans. R. Soc. Lond. 175, 121.Google Scholar
Suslick, K.S., Didenko, Y., Fang, M.M., Hyeon, T., Kolbeck, K.J., William B. Mcnamara, I., Mdleleni, M.M. & Wong, M. 1999 Acoustic cavitation and its chemical consequences. Phil. Trans. R. Soc. Lond. A 357 (1751), 335353.CrossRefGoogle Scholar
Van Assche, D., Reithuber, E., Qiu, W., Laurell, T., Henriques-Normark, B., Mellroth, P., Ohlsson, P. & Augustsson, P. 2020 Gradient acoustic focusing of sub-micron particles for separation of bacteria from blood lysate. Sci. Rep. 10, 3670.CrossRefGoogle ScholarPubMed
Wiklund, M. 2012 Acoustofluidics 12: biocompatibility and cell viability in microfluidic acoustic resonators. Lab on a Chip 12 (11), 20182028.CrossRefGoogle ScholarPubMed