Published online by Cambridge University Press: 26 April 2006
The problem of viscous fingering in a Hele-Shaw cell with moving contact lines is considered. In contrast to the usual situation where the displaced fluid coats the solid surface in the form of thin films, here, both the displacing and the displaced fluids make direct contact with the solid. The principal differences between these two situations are in the ranges of attainable values of the gapwise component of the interfacial curvature (the component due to the bending of the fluid interface across the small gap of the Hele-Shaw cell), and in the introduction of two additional parameters for the case with moving contact lines. These parameters are the receding contact angle, and the sensivity of the dynamic angle to the speed of the contact line. Our objective is the prediction of the shape and widths of the fingers in the limit of small capillary number, Uμ/σ. Here, U denotes the finger speed, μ denotes the dynamic viscosity of the more viscous displaced fluid, and σ denotes the surface tension of the fluid interface. As might be expected, there are similarities and differences between the two problems. Despite the fact that different equations arise, we find that they can be analysed using the techniques introduced by McLean & Saffman and Vanden-Broeck for the thin-film case. The nature of the multiplicity of solutions also appears to be similar for the two problems. Our results indicate that when contact lines are present, the finger shapes are sensitive to the value of the contact angle only in the vicinity of its nose, reminiscent of experiments where bubbles or wires are placed at the nose of viscous fingers when thin films are present. On the other hand, in the present problem at least two distinct velocity scales emerge with well-defined asymptotic limits, each of these two cases being distinguished by the relative importance played by the two components of the curvature of the fluid interface. It is found that the widths of fingers can be significantly smaller than half the width of the cell.