Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T17:12:20.639Z Has data issue: false hasContentIssue false

A study of the turbulent separated-flow region occurring at a compression corner in supersonic flow

Published online by Cambridge University Press:  28 March 2006

H. McDonald
Affiliation:
British Aircraft Corporation, Preston Division, Warton Aerodrome, Near Preston, Lancashire

Abstract

The turbulent separated-flow region occurring at a compression corner under certain circumstances at supersonic speed has been examined in the light of recent improvements to base pressure theory (McDonald 1964). This base pressure theory is further extended from what could be termed a single-layer model of the re-attaching boundary layer to a two-layer model, thus enabling the inviscid shock configuration which occurs at the corner to be determined. Application of this analysis to some experimental results indicates a substantial measure of agreement.

While this analysis has been framed for estimating the scale of the corner interaction, the extension can of course be applied to increase the range of initial boundary-layer thicknesses to which McDonald's analysis is applicable. An example of such an application is shown to be in good agreement with experiment.

Type
Research Article
Copyright
© 1965 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beastall, E. & Eggink, H. 1951 R.A.E. Tech. Note Aero. no. 2061.
Chapman, D. R., Wimbrow, W. R. & Kesler, R. H. 1952 NACA T.N. no. 2611.
Chapman, D. R., Kuehn, D. M. & Larson, H. K. 1959 NACA Rep. no. 1356.
Cooke, J. C., 1963 R.A.E. Note Aero. no. 2879.
Gadd, G. E., Holder, D. W. & Regan, J. D. 1955 Aero. Res. Coune. 17, 490.
Goin, K. L., 1952 NACA R.M. L52D21.
Hastings, R. C., 1963 R.A.E. Tech. Note Aero. no. 2931.
Honda, M., 1958 J. Aero. Sci. 25, 667.
Kirk, F. N., 1959 R.A.E. Tech. Note Aero. no. 2377.
Korst, H. H., Page, R. H. & Childs, M. E. 1955 University of Illinois ME-TN-392-3.
Korst, H. H., Chow, W. L. & Zumwalt, G. W. 1959 University of Illinois ME-TN-392-5.
Liepmann, H. W. & Laufer, J. 1947 NACA T.N. no. 1259.
Love, E. S., 1957 NACA T.N. no. 3819.
Ludwieg, H. & Tillman, W. 1950 NACA T.M. no. 1285.
Mager, A., 1956 J. Aero. Sci. 23, 181.
Mager, A., 1959 J. Aero. Sci. 25, 305.
Maskell, E. C., 1951 R.A.E. Rep. Aero. no. 2443.
McCullough, G. & Gault, D. 1949 NACA T.N. no. 1923.
McDonald, H., 1964 Aero. Quart. 15, 247.
Morrow, J. D. & Katz, E. 1955 NACA T.N. no. 3548.
Mueller, T. J. & Robertson, J. M. 1963 Modern Developments in Theoretical and Applied Mechanics, vol. I, p. 326.
Nash, J. F., 1962a N.P.L. Aero Rep. no. 1019.
Nash, J. F., 1962b N.P.L. Aero. Rep. 1036 (R. & M. no. 3344).
Nash, J. F., 1964 N.P.L. Aero. Rep. no. 1112.
Nash, J. F., Quincey, V. G. & Callinan, J. 1963 N.P.L. Aero. Rep. no. 1070.
Ray, A. K., 1962 Z. Flugwiss. 10, Heft 6.
Reshotko, E. & Tucker, M. 1955 NACA T.N. no. 3454.
Reshotko, E. & Tucker, M. 1957 NACA T.N. no. 4154.
Saltzman, E. J., 1961 NASA T.N. D-1056.
Sanders, F. & Crabtree, L. F. 1963 R.A.E. Tech. Note Aero. no. 2751.
Sirieux, M., 1960 La Recherche Aeronautique, Sept./Oct.
Squire, H. B. & Young, A. D. 1937 Aero. Res. Counc. R. & M. 1838.
Stratford, B. S., 1959 J. Fluid Mech. 5, 1.
Tetervin, N. & Lin, C. C. 1951 NACA Rep. no. 1046.
Townsend, A. A., 1960 J. Fluid Mech. 8, 143.
Townsend, A. A., 1962 J. Fluid Mech. 12, 536.
White, R. A., 1963 University of Illinois Ph.D. Thesis.
Wimbrow, W. R., 1954 NACA A54A07.