Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-22T12:25:32.753Z Has data issue: false hasContentIssue false

Studies on boundary-layer separation in unsteady flows using an integral method

Published online by Cambridge University Press:  20 April 2006

Michinori Matsushita
Affiliation:
Department of Mechanical Engineering, Kyoto University. Japan
Shigeru Murata
Affiliation:
Department of Mechanical Engineering, Kyoto University. Japan
Teruaki Akamatsu
Affiliation:
Department of Mechanical Engineering, Kyoto University. Japan

Abstract

A new two-parameter integral method is presented which is applicable to unsteady two-dimensional laminar boundary layers whether they are separated or not. The governing equations consist of three moments of the boundary-layer equation, and the assumed velocity profiles are those of unsteady trailing-edge flow and Falkner-Skan flow with slip. The governing equation system being hyperbolic, the spontaneous generation of a singularity associated with unsteady separation is confirmed as the focusing of characteristics. The obtained results of the boundary-layer quantities as well as the generation of separation singularity are in good agreement with those of exact methods (e.g. van Dommelen & Shen 1980) for starting flows of cylinders.

Type
Research Article
Copyright
© 1984 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blasius, H. 1908 Z. Math. Phys. 56, 1.
Cebeci, T. 1979 J. Comp. Phys. 31, 153.
Cebeci, T. 1982 In Numerical and Physical Aspects of Aerodynamic Flows (ed. T. Cebeci), chap. 15. Springer.
Cebeci, T. & Wilson, W. B. 1972 Trans. ASME D: J. Basic Engng 94, 697.
Cousteix, J. & Houdeville, R. 1981 AIAA J. 19, 976.
Cowley, S. J. 1983 J. Fluid Mech. 135, 389.
Goldstein, S. 1948 Q. J. Mech. Appl. Maths 1, 43.
Goldstein, S. & Rosenhead, L. N. 1936 Proc. Camb. Phil. Soc. 32, 392.
Howarth, L. 1938 Proc. R. Soc. Lond. A 164, 547.
Lees, L. & Reeves, B. L. 1964 AIAA J. 2, 1907.
Lugt, H. J. & Haussling, H. J. 1974 J. Fluid Mech. 65, 711.
Matsushita, M. & Akamatsu, T. 1983 Bull. JSME 26, 1502.
Matsushita, M. & Akamatsu, T. 1984 Butt. JSME (to appear).
Moses, H. L., Jones, R. R. & O'Brien, W. F. 1978 AIAA J. 16, 61.
Nagata, H., Minami, K. & Murata, Y. 1979 Bull. JSME 22, 512.
Pohlhausen, K. 1921 Z. angew. Math. Mech. 1, 252.
Proudman, I. & Johnson, K. 1962 J. Fluid Mech. 12, 161.
Satofuka, N. & Morinishi, K. 1982 NASA TM 81339.
Schuh, H. 1953 Z. Flugwiss. 1, 122.
Sears, W. R. & Telionis, D. P. 1975 SIAM J. Appl. Maths 28, 215.
Shen, S. F. 1978 Adv. Appl. Mech. 18, 177.
Tani, I. 1954 J. Aero. Sci. 21, 487.
Tani, I. & Yu, N. J. 1971 In Recent Research on Unsteady Boundary Layers (ed. E. A. Eichelbrenner), p. 886.
Ta Phuoc Loc 1980 J. Fluid Mech. 100, 111.
Telionis, D. P. 1981 Unsteady Viscous Flows. Springer.
Telionis, D. P. & Tsahalis, D. T. 1974 Acta Astronautica 1, 1487.
Terril, R. M. 1960 Phil. Trans. R. Soc. Lond. A 253, 55.
van Dommelen, L. L. & Shen, S. F. 1980 J. Comp. Phys. 38, 125.
van Dommelen, L. L. & Shen, S. F. 1982 In Numerical and Physical Aspects of Aerodynamic Flows (ed. T. Cebeci), chap. 17. Springer.
Wang, K. C. 1982 In Numerical and Physical Aspects of Aerodynamic Flows (ed. T. Cebeci), chap. 16. Springer.
Williams, J. C. 1977 Ann. Rev. Fluid Mech. 9, 113.
Williams, J. C. 1982 J. Fluid Mech. 115, 27.