Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T07:28:15.874Z Has data issue: false hasContentIssue false

The structure of a turbulent free shear layer in a rotating fluid

Published online by Cambridge University Press:  26 April 2006

A. A. Bidokhti
Affiliation:
Department of Physics. University of Newcastle upon Tyne. NE1 7RU. UK Present address: Atomic Energy Organisation of Iran, P.O. Box 14155-1339, Tehran, Iran.
D. J. Tritton
Affiliation:
Department of Physics. University of Newcastle upon Tyne. NE1 7RU. UK Present address: Institut de Mécanique de Grenoble, Domaine Universitaire, B.P.53X, 38041 Grenoble Cedex, France.

Abstract

An experimental investigation has been carried out on the effects of rotation on the development and structure of turbulence in a free shear layer, oriented so that its mean vorticity is parallel or antiparallel to the system vorticity. The effective local Rossby number extended down to about 1/3. The experimental methods were hydrogen-bubble flow visualization and hot-film anemometry.

In summarizing the results we refer to stabilized flow when the system vorticity has the same sign as the shear vorticity and destabilized and subsequently restabilized when it has the opposite sign (Tritton 1992). The roller eddy pattern, familiar in non-rotating flow, was observed in all stabilized flows, but was almost completely disrupted by even weak destabilization. Notable features of the quantitative results were: reorientation by Coriolis effects of the Reynolds stress tensor (inferred from the ratio of the cross-stream to longitudinal turbulence intensity and the normalized shear stress); changes in the ratio of spanwise to longitudinal intensity similar to but weaker than changes in the ratio of cross-stream to longitudinal; a gradual decrease, with increasing stabilization, of the Reynolds shear stress leading ultimately to its changing sign; an increase of the Reynolds shear stress in the destabilized range followed by rapid collapse to almost zero with restabilization. Absolute intensities did not change in line with the turbulence energy production, implying enhancement of dissipation in destabilized flow and inhibition in stabilized and restabilized. Correlation measurements indicated changes of lengthscale in the spanwise direction, and spectra indicated changes in the longitudinal direction that suggest that this enhancement and inhibition are associated with variations between fully three-dimensional and partially two-dimensional turbulence. Data for a wake in a rotating fluid (Witt & Joubert 1985) show similarities to some of the above observations and can be incorporated into the interpretation.

Type
Research Article
Copyright
© 1992 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersson H. I., Nilsen P. J., Eliasson, P. & Rizzi A. 1988 Proc. 14th IAHR Symp. on Progress within Large and High-Specific Energy Units, vol. 2, p. 479. Trondheim: Tapir.
Badri Narayanan, M. A. & Raghu 1982 Dept. Aero. Engng. Indian hist. Sci. Bangalore Rep. 82FM4.
Bersal, L. P. & Roshko A. 1986 J. Fluid Mech. 170, 499.
Bertoglio J. P. 1982 An. Inst. Aero. Astro. J. 20, 1175.
Bidokhti, A. A. & Tritton. D. J. 1990 University of Newcastle upon Tyne. Dept. Phys. Rep. GFD 90/1.
Breidenthal R. 1981 J. Fluid Mech. 109, 1.
Browand, F. K. & Latigo, B. O. 1979 Phys. Fluids 22, 1011.
Brown, G. L. & Roshko A. 1974 J. Fluid Mech. 64, 775.
Cantwell B. J. 1981 Ann. Rev. Fluid Mech. 13, 457.
Chandrsuda C., Mehta R. D., Weir, A. D. & Bradshaw P. 1978 J. Fluid Mech. 85, 693.
Chollet J. P., Lesieur, M. & Comte P. 1988 Fluid Dyn. Res. 3, 315.
Hopfinger E. J. 1989 In Theoretical and Applied Mechanics, (Proc. 17th Internat. Congr. Appl. Mech., Grenoble) (ed. P. Germain, M. Piau & D. Caillerie), p. 117. Elsevier.
Hopfinger E. J., Griffiths, R. W. & Mory M. 1983 J. MeAc. TheAor. Appl., NumeAro Special, p. 21.
Ibbetson, A. & Tritton D. J. 1975 J. Fluid Mech. 68, 639.
Jacquin L., Leuchter O., Cambon, C. & Mathieu J. 1990 J. Fluid Mech. 220, 1.
Jimenez J. 1983 J. Fluid Mech. 132, 319.
Johnston J. P., Halleen, R. M. & Lezius D. K. 1972 J. Fluid Mech. 56, 533.
Koyama H., Masuda S., Ariga, I. & Watanabe I. 1979 Trans. ASME A: J. Engng Power 101, 23.
Kristofferson, R. & Andersson H. I. 1992 J. Fluid Mech. (submitted)
Lasheras J. C., Cho, J. S. & Maxworthy T. 1986 J. Fluid Mech. 172, 232.
Lesieur M. 1983 J. MeAc. TheAor. Appl. NumeAro Special, p. 5.
Lesieur M., Yanase, S. & MeAtais O. 1991 Phys. Fluids A 3, 403.
Mehta R. D., Inoue O., King, L. S. & Bell J. H. 1987 Phys. Fluids 30, 2054.
Narasimha, R. & Sreenivasan K. R. 1979 Adv. Appl. Mech. 19, 221.
Nilsen, P. J. & Andersson H. I. 1991 Extended abstract: ‘Plane mixing layer subject to system rotation’, privately communicated.
Oster, D. & Wygnanski I. 1982 J. Fluid Mech. 123, 91.
Pui, N. K. & Gartshore I. S. 1979 J. Fluid Mech. 91, 111.
Rodi W. 1975 In Studies of Convection (ed. B. Launder), vol. 1, p. 79. Academic.
Roshko A. 1976 Am. Inst. Aero. Astro. J. 10, 1349.
Rothe, P. H. & Johnston J. P. 1975 Dept. Mech. Engng, Stanford Univ. Rep. PD-17.
Rothe, P. H. & Johnston J. P. 1979 Trans. ASME I: J. Fluids Engng 101, 117.
Saiy, M. & Peerless S. J. 1978 J. Fluid Mech. 89, 709.
Speziale, C. G. & Mac Giolla Mhuiris N. 1989 Phys. Fluids A 1, 294.
Townsend A. A. 1975 The Structure of Turbulent Shear Flow (2nd edn). Cambridge University Press.
Tritton D. J. 1978 In Rotating Fluids in Geophysics (ed. P. H. Roberts & A. M. Soward), p. 105. Academic.
Tritton D. J. 1985 In Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics (ed. M. Ghil), Soc. Italiana Fis. Course XXXVIII, p. 172. North-Holland.
Tritton D. J. 1992 J. Fluid Mech. 241, 503523.
Watmuff J. H., Witt, H. T. & Joubert P. 1985 J. Fluid Mech. 157, 405.
Winant, C. D. & Browand F. K. 1974 J. Fluid Mech. 63, 237.
Witt H. T. 1986 Effects of rotation on turbulent boundary layers and wakes. Ph.D. thesis, University of Melbourne.
Witt, H. T. & Joubert P. N. 1985 In Preprints: 5th Symp. on Turbulent Shear Flows, Cornell, pp. 2125.
Wygnanski I., Oster D., Fielder, H. & Dziomba B. 1979 J. Fluid Mech. 93, 325.