Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T16:33:19.311Z Has data issue: false hasContentIssue false

Stochastic modelling of transverse wave instability in a liquid-propellant rocket engine

Published online by Cambridge University Press:  17 March 2014

Pavel P. Popov
Affiliation:
Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697, USA
Athanasios Sideris
Affiliation:
Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697, USA
William A. Sirignano*
Affiliation:
Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697, USA
*
Email address for correspondence: [email protected]

Abstract

The combustion stability of a liquid-propellant rocket engine experiencing a random, finite perturbation from steady-state conditions is examined. The probability is estimated for a nonlinear resonant limit-cycle oscillation to be triggered by a random disturbance. Transverse pressure waves are considered by using a previously published two-dimensional nonlinear pressure wave equation coupled with Euler equations governing the velocity components. The cylindrical combustion chamber is a complex system containing multiple co-axial methane–oxygen injectors; each co-axial jet is analysed for mixing and burning on its own local grid scheme, with the energy release rate coupled to the wave oscillation on the more global grid. Two types of stochastic forcing for the random disturbance are explored: a travelling Gaussian pressure pulse and an oscillating pressure dipole source. The random variables describing the pulse are magnitude, location, duration and orientation of the disturbances. The polynomial chaos expansion (PCE) method is used to determine the long-time behaviour and infer the asymptote of the solution to the governing partial differential equations. Depending on the random disturbance, the asymptote could be the steady-state solution or a limit-cycle oscillation, e.g. a first tangential travelling wave mode. The asymptotic outcome is cast as a stochastic variable which is determined as a function of input random variables. The accuracy of the PCE application is compared with a Monte Carlo calculation and is shown to be significantly less costly for similar accuracy.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Awad, E. & Culick, F. E. C. 1986 On the existence and stability of limit cycles for longitudinal acoustic modes in a combustion chamber. Combust. Sci. Technol. 46, 195222.Google Scholar
Bar-Yam, Y. 1996 Dynamics of Complex Systems. Copernicus Books.Google Scholar
Beran, P. S., Pettit, C. L. & Millman, D. R. 2006 Uncertainty quantification of limit-cycle oscillations. J. Comput. Phys. 217, 217247.Google Scholar
Bhatia, R. & Sirignano, W. A. 1991 A one-dimensional analysis of liquid-fueled combustion instability. J. Propul. Power 7, 953961.Google Scholar
Cameron, R. & Martin, W. 1947 The orthogonal development of non-linear functionals in series of Fourier–Hermite functionals. Ann. Maths 48, 385392.Google Scholar
Chorin, A. J. 1970 Gaussian fields and random flow. J. Fluid Mech. 41, 387403.Google Scholar
Crocco, L. & Cheng, S.-I.1953 High frequency combustion instability in rockets with distributed combustion. In Fourth Symposium (International) on Combustion vol. 4, pp. 865–880.Google Scholar
Crocco, L. & Cheng, S.-I. 1956 In Theory of Combustion Instability in Liquid Propellant Rocket Motors AGARDograph, vol. 8, Buttersworth.Google Scholar
Crocco, L. & Mitchell, C. E. 1969 Nonlinear periodic oscillations in rocket motors with distributed combustion. Combust. Sci. Technol. 1, 147169.Google Scholar
Crocco, L. & Sirignano, W. A. 1966 Effects of transverse velocity components on the nonlinear behavior of short nozzles. AIAA J. 4, 14281430.CrossRefGoogle Scholar
Crocco, L. & Sirignano, W. A.1967 Behaviour of Supercritical Nozzle Under Three-Dimensional Oscillatory Conditions AGARDograph, vol. 117, North Atlantic Treaty Organization.Google Scholar
Culick, F. E. C. 1994 Some recent results for nonlinear acoustics in combustion chambers. AIAA J. 32, 146169.CrossRefGoogle Scholar
Culick, F. E. C. 2006 Unsteady Motions in Combustion Chambers for Propulsion Systems. (AGARDograph), vol. RTO-AG-AVT-039. North Atlantic Treaty Organization.Google Scholar
Delplanque, J. -P. & Sirignano, W. A. 1993 Numerical study of transient vaporization of an oxygen droplet at sub- and super-critical conditions. Intl J. Heat Mass Transfer 36, 303314.CrossRefGoogle Scholar
Delplanque, J. -P. & Sirignano, W. A. 1996 Transcritical liquid oxygen droplet vaporization: effect on rocket combustion instability. J. Propul. Power 12, 349357.Google Scholar
Duvvur, A., Chiang, C. -H. & Sirignano, W. A. 1996 Oscillatory fuel droplet vaporization: driving mechanism for combustion instability. J. Propul. Power 12, 358365.CrossRefGoogle Scholar
Flandro, G., Fischbach, S. & Majdalani, J. 2007 Nonlinear rocket motor stability prediction: limit amplitude, triggering, and mean pressure shift. Phys. Fluids 19 (9), 9410194116.Google Scholar
Ghanem, R. & Spanos, P. D. 1990 Polynomial chaos in stochastic finite elements. J. Appl. Mech. 57, 197202.Google Scholar
Guézennec, N., Masquelet, M. & Menon, S. 2012 Large eddy simulation of flame-turbulence interactions in a LOX-CH$_4$ shear coaxial injector. 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. American Institute of Aeronautics and Astronautics.Google Scholar
Harrje, D. & Reardon, F.1972 Liquid propellant rocket combustion instability. NASA Technical Report SP-194. National Aeronautics and Space Administration.Google Scholar
Heidmann, M. F. & Wieber, P. R.1965 Analysis of $n$-heptane vaporization in unstable combustor with travelling transverse oscillations NASA Technical Note D-3424. National Aeronautics and Space Administration.Google Scholar
Hien, T. & Kleiber, M. 1997 Stochastic finite element modeling in linear transient heat transfer. Comput. Meth. Appl. Mech. Engng 144, 111124.CrossRefGoogle Scholar
Jacob, E. J., Flandro, G. A., Gloyer, P. W. & French, J. C. 2010 Nonlinear liquid rocket combustion instability behavior using ${\rm UCDM}^{{\rm TM}}$ process. In 46th AIAA/ASME/SAE/ASEE Joint Conference and Exhibit vol. 3, pp. 27962805. American Institute of Aeronautics and Astronautics.Google Scholar
Knio, O. M. & Le Maître, O. P. 2006 Uncertainty propagation in CFD using polynomial chaos decomposition. Fluid Dyn. Res. 38, 616640.Google Scholar
Lin, G., Su, C. H. & Karniadakis, G. E. 2006 Predicting shock dynamics in the presence of uncertainties. J. Comput. Phys. 217, 260276.Google Scholar
Liu, N., Hu, B. & Yu, Z. W. 2001 Stochastic finite element method for random temperature in concrete structures. Intl J. Solids Struct. 38, 69656983.Google Scholar
Le Maître, O., Knio, O., Najm, H. & Ghanem, R. 2001 A stochastic projection method for fluid flow. I. Basic formulation. J. Comput. Phys. 173, 481511.CrossRefGoogle Scholar
Le Maître, O., Reagan, M., Najm, H., Ghanem, R. & Knio, O. 2002 A stochastic projection method for fluid flow. II. Random process. J. Comput. Phys. 181, 944.Google Scholar
Masquelet, M. & Menon, S. 2010 Large eddy simulation of flame-turbulence interactions in a shear coaxial injector. J. Propul. Power 26 (5), 925935.CrossRefGoogle Scholar
Masquelet, M., Menon, S., Jin, Y. & Friedrich, R. 2009 Simulation of unsteady combustion in a LOX-GH$_2$ fueled rocket engine. Aerosp. Sci. Technol. 13 (8), 466474.Google Scholar
Meecham, W. C. & Jeng, D. T. 1968 Use of the Wiener–Hermite expansion for nearly normal turbulence. J. Fluid Mech. 32, 225225.Google Scholar
Mendes, M. A. A., Pereira, J. M. C. & Pereira, J. C. F. 2011 Calculation of premixed combustion within inert porous media with model parametric uncertainty quantification. Combust. Flame 158, 466476.Google Scholar
Mitchell, C. E., Crocco, L. & Sirignano, W. A. 1969 Nonlinear longitudinal instability in rocket motors with concentrated combustion. Combust. Sci. Technol. 1, 3563.Google Scholar
Oefelein, J. 2006 Mixing and combustion of cryogenic oxygen–hydrogen shear-coaxial jet flames at supercritical pressure. Combust. Sci. Technol. 178 (1–3), 229252.Google Scholar
Oefelein, J. C. & Yang, V. 1993 Comprehensive review of liquid-propellant combustion instabilities in F-1 engines. J. Propul. Power 9, 657677.Google Scholar
Oefelein, J. C. & Yang, V. 1998 Modeling high-pressure mixing and combustion processes in liquid rocket engines. J. Propul. Power 14 (5), 843857.Google Scholar
Ottino, J. M. 2004 Engineering complex systems. Nature 427, 399399.Google Scholar
Petras, K. 2003 Smolyak cubature of given polynomial degree with few nodes for increasing dimension. Numer. Math. 93, 729753.CrossRefGoogle Scholar
Phenix, B. D., Dinaro, J. L., Tatang, M. A., Tester, J. W., Howard, J. B. & McRae, G. J. 1998 Incorporation of parametric uncertainty into complex kinetic mechanisms: application to hydrogen oxidation in supercritical water. Combust. Flame 112, 132146.CrossRefGoogle Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Priem, R. J. & Heidmann, M. F.1960 Propellant vaporization as a design criterion for rocket-engine combustion chambers. NASA Technical Report R-67. National Aeronautics and Space Administration.Google Scholar
Reagan, M. T., Najm, H. N., Ghanem, R. G. & Knio, O. M. 2003 Uncertainty quantification in reacting-flow simulations through non-intrusive spectral projection. Combust. Flame 132, 545555.Google Scholar
Reardon, F. H., Crocco, L. & Harrje, D. T. 1964 Velocity effects in transverse mode liquid propellant rocket combustion instability. AIAA J. 12, 16311641.Google Scholar
Schmitt, T., Méry, Y., Boileau, M. & Candel, S. 2011 Large-eddy simulation of oxygen/methane flames under transcritical conditions. Proc. Combust. Inst. 33, 13831390.Google Scholar
Schmitt, T., Selle, L., Ruiz, A. & Cuenot, B. 2010 Large-eddy simulation of supercritical-pressure round jets. AIAA J. 48 (9), 21332144.Google Scholar
Sirignano, W. A.1964 Theoretical study of nonlinear combustion instability: longitudinal mode. PhD thesis (Report No. 677), Princeton University Department of Aerospace and Mechanical Sciences, Princeton, NJ.Google Scholar
Sirignano, W. A. 2010 Fluid Dynamics and Transport of Droplets and Sprays. 2nd edn. Cambridge University Press.Google Scholar
Sirignano, W. A. & Crocco, L. 1964 A shock wave model of unstable rocket combustors. AIAA J. 2, 12851296.Google Scholar
Sirignano, W. A., Delplanque, J. -P., Chiang, C. H. & Bhatia, R. 1995 Liquid propellant droplet vaporization: a rate-controlling process for combustion instability. In Liquid Rocket Engine Combustion Instability (ed. Yang, V. & Anderson, W. E.), Progress in Astronautics and Aeronautics, vol. 169, pp. 307343. American Institute of Aeronautics and Astronautics.Google Scholar
Sirignano, W. A. & Popov, P. P. 2013 Two-dimensional model for liquid-rocket transverse combustion instability. AIAA J. 51, 29192934.Google Scholar
Sluzalec, A. 2000 Random heat flow with phase change. Intl J. Heat Mass Transfer 43, 23032312.Google Scholar
Strahle, W. C.1965a Periodic solutions to a convective droplet burning problem: the stagnation point. In Proceedings of the Tenth Symposium (International) on Combustion, pp. 1315–1325. The Combustion Institute.CrossRefGoogle Scholar
Strahle, W. C. 1965b Unsteady laminar jet flame at large frequencies of oscillation. AIAA J. 3, 957960.Google Scholar
Strahle, W. C. 1965c Unsteady reacting boundary layer on a vaporizing flat plate. AIAA J. 3, 11951198.Google Scholar
Strahle, W. C.1967 High frequency behavior of laminar jet flame subjected to transverse sound waves. In Proceedings of the Eleventh Symposium (International) on Combustion, pp. 747–754. The Combustion Institute.Google Scholar
Tong, A. & Sirignano, W. A. 1989 Oscillatory vaporization of fuel droplets in unstable combustor. J. Propul. Power 5, 257261.CrossRefGoogle Scholar
Tsien, H. S. 1952 The transfer function of rocket nozzles. ARS J. 22, 139143.Google Scholar
Tucker, P. K., Menon, S., Merkle, C. L., Oefelein, J. C. & Yang, V.2007 An approach to improved credibility of CFD simulations for rocket injector design. In 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Cincinnati, OH, paper AIAA 2007-5572. American Institute of Aeronautics and Astronautics.Google Scholar
Tucker, P. K., Menon, S., Merkle, C. L., Oefelein, J. C. & Yang, V.2008 Validation of high-fidelity CFD simulations for rocket injector design. In 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Hartford, CT, paper AIAA 2008-5226. American Institute of Aeronautics and Astronautics.Google Scholar
Wiener, N. 1938 The homogeneous chaos. Am. J. Maths 60, 897936.Google Scholar
Witteveen, J. A. S., Loeven, A., Sarkar, S. & Bijl, H. 2008 Probabilistic collocation for period-1 limit cycle oscillations. J. Sound Vib. 311, 421439.Google Scholar
Witteveen, J. A. S., Sarkar, S. & Bijl, H. 2007 Modeling physical uncertainties in dynamic stall induced fluid–structure interaction of turbine blades using arbitrary polynomial chaos. Comput. Struct. 85, 866878.Google Scholar
Xiu, D. 2010 Numerical Methods for Stochastic Computations: A Spectral Method Approach. Princeton University Press.Google Scholar
Xiu, D. & Karniadakis, G. 2002 The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24 (2), 619644.Google Scholar
Xiu, D. & Karniadakis, G. E. 2003 Modeling uncertainty in flow simulations via generalized polynomial chaos. J. Comput. Phys. 187, 137167.Google Scholar
Xiu, D., Lucor, D., Su, C. H. & Karniadakis, G. E. 2002 Stochastic modeling of flow structure interactions using generalized polynomial chaos. J. Fluids Engng 124, 5159.Google Scholar
Yang, B., Cuoco, F. & Oschwald, M. 2007 Atomization and flames in LOX/${\mathrm{H}_{2}}$ and LOX/${\mathrm{CH}_{4}}$-spray combustion. J. Propul. Power 23, 763771.Google Scholar
Yang, V., Kim, S. I. & Culick, F. E. C. 1990 Triggering of longitudinal pressure oscillations combustion chambers. I: nonlinear gasdynamics. Combust. Sci. Technol. 72, 183214.Google Scholar
Yang, V. & Lin, N. N. 1994 Vaporization of liquid oxygen (LOX) droplets at supercritical conditions. Combust. Sci. Technol. 97, 247270.Google Scholar
Zinn, B. T. 1968 A theoretical study of nonlinear combustion instability in liquid-propellant rocket engines. AIAA J. 6, 19661972.Google Scholar
Zinn, B. T. & Powell, E. A.1971 Nonlinear combustion instability in liquid-propellant rocket engines. In Proceedings of the Thirteenth Symposium (International) on Combustion, pp. 491–503. The Combustion Institute.Google Scholar