Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-19T07:24:42.400Z Has data issue: false hasContentIssue false

A spherical particle straddling a fluid/gas interface in an axisymmetric straining flow

Published online by Cambridge University Press:  26 April 2006

J. A. Stoos
Affiliation:
Department of Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA Current address: Mobil R. & D., Paulsboro, New Jersey 08066, USA.
L. G. Leal
Affiliation:
Department of Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA Curent address: Department of Chemical and Nuclear Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106, USA.

Abstract

Numerical solutions, obtained via the boundary-integral technique, are used to consider the effect of a linear axisymmetric straining flow on the existence of steady-state configurations in which a neutrally buoyant spherical particle straddles a gas–liquid interface. The problem is directly applicable to predictions of the stability of particle capture in flotation processes, and is also of interest in the context of contact angle and surface tension measurements. A primary goal of the present study is a determination of the critical capillary number, Cac, beyond which an initially captured particle is pulled from the interface by the flow, and the dependence of Cac on the equilibrium contact angle θc. We also present equilibrium configurations for a wide range of contact angles and subcritical capillary numbers.

Type
Research Article
Copyright
© 1990 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boucher, E. A. & Evans, M. J. B. 1975 Pendant drop profiles and related capillary phenomena Proc. R. Soc. Lond. A 346, 349Google Scholar
Boucher, E. A., Evans, M. J. B. & Kent, H. J. 1976 Capillary phenomena. II. Equilibrium and stability of rotationally symmetric fluid bodies. Proc. R. Soc. Lond. A 349, 81.Google Scholar
Boucher, E. A. & Jones, T. G. J. 1981 Empirical criteria for the flotation of a solid sphere at an interface in a gravitational field. J. Colloid Interface Sci. 83, 645.Google Scholar
Boucher, E. A. & Kent, H. J. 1977 Capillary phenomena III. Properties of rotationally symmetric fluid bodies with one asymptote — holms. Proc. R. Soc. Lond. A 356, 61.Google Scholar
Boucher, E. A. & Kent, H. J. 1978 Capillary phenomena Part 6. — Behavior associated with the flotation and mechanical manipulation of solid spheres at fluid interfaces. J. Chem. Soc. Farday Trans. I 74, 846.Google Scholar
Chi, B. & Leal, L. G. 1987 A theoretical study of the motion of a viscous drop toward a fluid interface at low Reynolds number. J. Colloid Interface Sci. (Accepted.)Google Scholar
Davis, A. M. J. 1982 Two phase Stokes flows distorted by a sphere straddling the interface. Intl J. Multiphase Flow 8, 361.Google Scholar
Derjaguin, B. V. & Dukhin, S. S. 1981 Kinetic theory of the flotation of fine particles. In Proc. 13th Intl Mineral Processing Congr., Warsaw, 1979. Elsevier.
Dussan V., E. B. 1979 On the spreading of liquids on solid surfaces: static and dynamic contact lines. Ann. Rev. Fluid Mech. 11, 371.Google Scholar
Falade, A. 1982 Arbitrary motion of an elliptic disc at a fluid interface. Intl J. Multiphase Flow 8, 543.Google Scholar
French, R. M. & Wilson, D. J. 1980 Fluid mechanics — foam flotation interactions. Sep. Sci. Tech. 15, 1213.Google Scholar
Geller, A. S., Lee, S. H. & Leal, L. G. 1986 The creeping motion of a spherical particle normal to a deformable interface. J. Fluid Mech. 169, 27.Google Scholar
Girault, H. H. J., Schiffrin, D. J. & Smith, B. D. V. 1982 Drop image processing for surface and interfacial tension measurements. J. Colloid Interface Sci. 137, 207.Google Scholar
Girault, H. H. J., Schiffrin, D. J. & Smith, B. D. V. 1984 The measurement of interfacial tension of pendent drops using a video image digitizer. J. Electroanal. Chem. 101, 257.Google Scholar
Hiemenz, P. C. 1977 Principles of Colloid and Surface Chemistry, Ch. 6. New York: Dekker.
Huh, C. & Mason, S. G. 1974 The flotation of axisymmetric particles at horizontal liquid interfaces. J. Colloid Interface Sci. 47, 271.Google Scholar
Huh, C. & Scriven, L. E. 1969 Shapes of axisymmetric fluid interfaces of unbounded extent. J. Colloid Interface Sci. 30, 323.Google Scholar
Iooss, G. & Joseph, D. D. 1980 Elementary Stability and Bifurcation Theory. Springer.
Ivanov, I. B., Kralchevsky, P. A. & Nikolov, A. D. 1985 Film and line tension effects on the attachment of particles to an interface I. Conditions for mechanical equilibrium of fluid and solid particles at a fluid interface. J. Colloid Interface Sci. 112, 97.Google Scholar
Kantorovich, L. V. & Krylov, V. I. 1958 Approximate Methods of Higher Analysis. Interscience.
Kralchevsky, P. A., Ivanov, I. B. & Nikoiov, A. D. 1985 Film and line tension effects on the attachment of particles to an interface II. Shapes of the bubble (drop) and the external meniscus. J. Colloid Interface Sci. 112, 108.Google Scholar
Kralchevsky, P. A., Nikolov, A. D. & Ivanov, I. B. 1985 Film and line tension effects on the attachment of particles to an interface IV. Experimental studies with bubbles in solutions of dodecyl sodium sulfate. J. Colloid Interface Sci. 112, 132.Google Scholar
Kubicek, M. & Marek, M. 1983 Computational Methods in Bifurcation Theory and Dissipative Structures. Springer.
Ladyzhenskaya, O. A. 1969 The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach.
Lee, S. H. & Leal, L. G. 1982 Motion of a sphere in the presence of a deformable interface. Part 2: numerical study of the translation of a sphere normal to an interface. J. Colloid Interface Sci. 87, 81.Google Scholar
Nikolov, A. D., Kralchevsky, P. A. & Ivanov, I. B. 1985 Film and line tension effects on the attachment of particles to an interface III. A differential interferometric method for determination of the shapes of fluid surfaces. J. Colloid Interface Sci. 112, 122.Google Scholar
Princen, H. M. 1963 Shape of a fluid drop at a liquid—liquid interface. J. Colloid Interface Sci. 18, 178.Google Scholar
Princen, H. M. & Mason, S. G. 1965a Shape of a fluid drop at a fluid—liquid interface I. Extension and test of a two phase theory. J. Colloid Interface Sci. 20, 156.Google Scholar
Princen, H. M. & Mason, S. G. 1965b Shape of a fluid drop at a fluid—liquid interface II. Theory for three-phase systems. J. Colloid Interface Sci. 20, 246.Google Scholar
Rallison, J. M. & Acrivos, A. 1978 A numerical study of the deformation and burst of a viscous drop in an extensional flow. J. Fluid Mech. 89, 191.Google Scholar
Ranger, K. B. 1978 The circular disk straddling the interface of two-phase flow. Intl J. Multiphase Flow 4, 263Google Scholar
Rapacchietta, A. V. & Neumann, A. W. 1977 Force and free-energy analysis of small particles at fluid interfaces II. Spheres. J. Colloid Interface Sci. 59, 555.Google Scholar
Rapacchietta, A. V., Neumann, A. W. & Omenyi, S. N. 1977 Force and free-energy analysis of small particles at fluid interfaces I. Cylinders. J. Colloid Interface Sci. 59, 541.Google Scholar
Rotenberg, Y., Boruvka, L. & Neumann, A. W. 1983 Determination of surface tension and contact angle from the shapes of axisymmetric fluid interfaces. J. Colloid Interface Sci. 93, 169.Google Scholar
Rotenberg, Y., Boruvka, L. & Neumann, A. W. 1984 The shape of nonaxisymmetric drops on inclined planar surfaces. J. Colloid Interface Sci. 102, 424.Google Scholar
Sadhal, S. S. & Johnson, R. E. 1983a Stokes flow past bubbles and drops partially coated with thin films. Part 1. Stagnant cap of surfactant film-exact solutions. J. Fluid Mech. 126, 237.Google Scholar
Sadhal, S. S. & Johnson, R. E. 1983b Stokes flow past bubbles and drops partially coated with thin films. Part 2. Thin films with internal circulation — a perturbation solution. J. Fluid Mech. 132, 295.Google Scholar
Smith, P. G. & Ven, T. G. M. van de 1984 The effect of gravity on the drainage of a thin liquid film between a solid sphere interface and a liquid/fluid interface. J. Colloid Interface Sci. 100, 456.Google Scholar
Stone, H. A., Bentley, B. J. & Leal, L. G. 1986 An experimental study of transient effects in the breakup of viscous drops. J. Fluid Mech. 173, 131.Google Scholar
Stoos, J. A. 1987 Ph.D. dissertation. California Institute of Technology.
Sutherland, K. L. & Wark, I. W. 1955 Principles of Flotation. Melbourne: Australian Institute of Mining and Metallurgy.
Youngren, G. K. & Acrivos, A. A. 1975 Stokes flow past a particle of arbitrary shape: a numerical method of solution. J. Fluid Mech. 69, 377.Google Scholar
Youngren, G. K. & Acrivos, A. A. 1976 On the shape of a gas bubble in a viscous extensional flow. J. Fluid Mech. 76, 433.Google Scholar