Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T16:22:55.547Z Has data issue: false hasContentIssue false

Sound radiation during local laminar breakdown in a low-Mach-number boundary layer

Published online by Cambridge University Press:  26 April 2006

Meng Wang
Affiliation:
Center for Turbulence Research, Stanford University/NASA Ames Research Center, Moffett Field, CA 94035, USA
Sanjiva K. Lele
Affiliation:
Center for Turbulence Research, Stanford University/NASA Ames Research Center, Moffett Field, CA 94035, USA
Parviz Moin
Affiliation:
Center for Turbulence Research, Stanford University/NASA Ames Research Center, Moffett Field, CA 94035, USA

Abstract

The far-field sound of an unstable wave packet undergoing transition in a low-Mach-number, flat-plate boundary layer is investigated in the framework of Lighthill's acoustic analogy. Detailed accounts of the wave packet evolution are obtained by solving the full incompressible Navier–Stokes equations at Reδ = 1000. The numerically simulated flow structures show qualitative agreement with experimental observations of the fundamental breakdown type. The acoustic calculations are focused on the quadrupole source functions arising from Reynolds stress fluctuations. The wave packet is shown to produce negligible sound throughout the primary and secondary instability stages. Dramatic amplification of the Reynolds stress quadrupoles occurs as a result of the disintegration of the detached high-shear layer and the associated vortex shedding near the boundary layer edge. The dominant frequency of source oscillations coincides with that of vortex shedding.

Type
Research Article
Copyright
© 1996 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akylas, T. R. & Toplosky, N. 1986 The sound field of a Tollmien-Schlichting wave. Phys. Fluids 29, 685689.Google Scholar
Borodulin, V. I. & Kachanov, Y. S. 1992 Experimental study of soliton-like coherent structures. In Eddy Structure Identification in Free Turbulent Shear Flows. IUTAM Symp. Poitiers, 1992.
Breuer, K. S. 1989 The evolution of a localized disturbance in a laminar boundary layer. In Laminar-Turbulent Transition (ed. D. Arnal & R. Michel). IUTAM Symp. Toulouse, France, 1989. Springer.
Corral, R. & Jiménez, J. 1991 Direct numerical simulation of the leading edge boundary layer. Tech. Note ETSIA/MF-916. Dept. of Fluid Mech., Universidad Politécnica Madrid
Crighton, D. G. 1975 Basic principles of aerodynamic noise generation. Prog. Aerospace Sci. 16, 3196.Google Scholar
Crighton, D. G. 1993 Computational aeroacoustics for low Mach number flows. In Computational Aeroacoustics (ed. J. C. Hardin & M. Y. Hussaini). ICASE/NASA LaRC Series, Springer.
Crighton, D. G., Dowling, A. P., Ffowcs Williams, J. E., Heckl, M. & Leppington, F. G. 1992 Modern Methods in Analytical Acoustics, Chap. 16. Springer.
Crow, S. C. 1970 Aerodynamic sound emission as a singular perturbation problem. Stud. Appl. Maths 49, 2144.Google Scholar
Curle, N. 1955 The influence of solid boundaries upon aerodynamic sound. Proc. R. Soc. Lond. A 231, 505514.Google Scholar
Dolgova, I. I. 1977 Sound field radiated by a Tollmien-Schlichting wave. Sov. Phys. Acoust. 23, 259260.Google Scholar
Farabee, T. M., Hansen, R. J. & Keltie, R. F. (eds.) 1989 Flow-Induced Noise Due to Laminar-Turbulence Transition Process, ASME NCA—Vol. 5, ASME Winter Annual Meeting, San Francisco, 1989.
Fasel, H. F. 1990 Numerical simulation of instability and transition in boundary layer flows. In Laminar-Turbulent Transition (ed. D. Arnal & R. Michel). IUTAM Symp. Toulouse, France, 1989. Springer.
Fasel, H. F., Rist, U. & Konzelmann, U. 1990 Numerical investigation of the three-dimensional development in boundary layer transition. AIAA J. 28, 2937.Google Scholar
Ffowcs Williams, J. E. 1967 Flow noise. In Underwater Acoustics, Vol. 2, Chap. 6. Plenum.
Gaster, M. 1993 The origins of turbulence. In New Approaches and Concepts in Turbulence (ed. T. A. Dracos & A. Tsinober). Monte Verita Ser., Birkhauser, Boston.
Gaster, M. & Grant, I. 1975 An experimental investigation of the formation and development of a wave packet in a laminar boundary layer. Proc. R. Soc. Lond. A 347, 253269.Google Scholar
Goldstein, M. E. 1976 Aeroacoustics, Chap. 4. McGraw-Hill.
Haj-Hariri, H. & Akylas, T. R. 1985 The wall-shear-stress contribution to boundary-layer noise. Phys. Fluids 28, 27272729.Google Scholar
Haj-Hariri, H. & Akylas, T. R. 1986 Sound radiation by instability wave packets in a boundary layer. Stud. Appl. Maths 75, 5776.Google Scholar
Henningson, D. S., Lundbladh, A. & Johansson, A. V. 1993 A mechanism for bypass transition from localized disturbances in wall-bounded shear flows. J. Fluid Mech. 250, 169207.Google Scholar
Henningson, D. S., Spalart, P. & Kim, J. 1987 Numerical simulations of turbulent spots in plane Poiseuille and boundary layer flow. Phys. Fluids 30, 29142917.Google Scholar
Howe, M. S. 1975 Contributions to the theory of aerodynamic sound, with application to excess jet noise and the theory of the flute. J. Fluid Mech. 71, 625673.Google Scholar
Howe, M. S. 1979 The role of surface shear stress fluctuations in the generation of boundary layer noise. J. Sound Vib. 65, 159164.Google Scholar
Howe, M. S. 1992 A note on the Kraichnan-Phillips theorem. J. Fluid Mech. 234, 443448.Google Scholar
Kachanov, Y. S. 1994 Physical mechanisms of laminar-boundary-layer transition. Ann. Rev. Fluid Mech. 26, 411482.Google Scholar
Kachanov, Y. S. & Levchenko, V. Y. 1984 The resonant interaction of disturbances at laminar-turbulent transition in a boundary layer. J. Fluid Mech. 138, 209247.Google Scholar
Klebanoff, P. S., Tidstrom, K. D. & Sargent, L. M. 1962 The three-dimensional nature of boundary-layer instability. J. Fluid Mech. 12, 134.Google Scholar
Kleiser, L. & Zang, T. A. 1991 Numerical simulations of transition in wall-bounded shear flows. Ann. Rev. Fluid Mech. 23, 495537.Google Scholar
Kraichnan, R. 1956 Pressure fluctuations in turbulent flow over a flat plate. J. Acoust. Soc. Am. 28, 378390.Google Scholar
Lagier, M. & Sornette, D. 1986 A two fluids model of the acoustic noise radiated by intermittent flow. Acoustica 61, 116123.Google Scholar
Landahl, M. T. 1975 Wave mechanics of boundary layer turbulence and noise. J. Acoust. Soc. Am. 57, 824831.Google Scholar
Lauchle, G. C. 1980 On the radiated noise due to boundary layer transition. J. Acoust. Soc. Am. 67, 158168.Google Scholar
Lauchle, G. C. 1981 Transition noise — the role of fluctuating displacement thickness. J. Acoust. Soc. Am. 69, 665671.Google Scholar
Lauchle, G. C. 1989 Transition as a source of radiated noise and vibration. In Flow-Induced Noise due to Laminar-Turbulence Transition Process (ed. T. M. Farabee, R. J. Hansen & R. F. Keltie). ASME NCA—Vol. 5, pp. 3138.
Lauchle, G. C. 1991 Hydroacoustics of transitional boundary layer flow. ASME Appl. Mech. Rev. 44, 517531.Google Scholar
Laufer, J., Ffowcs Williams, J. E. & Childress, S. 1964 Mechanisms of noise generation in the turbulent boundary layer. AGARDograph 90, 3950.Google Scholar
Le, H. & Moin, P. 1991 An improvement of fractional step methods for the incompressible Navier—Stokes equations. J. Comput. Phys. 92, 369379.Google Scholar
Lighthill, M. J. 1952 On sound generated aerodynamically; I. General theory. Proc. R. Soc. Lond. A 211, 564587.Google Scholar
Lighthill, M. J. 1993 A general introduction to aeroacoustics and atmospheric sound. In Computational Aeroacoustics (ed. J. C. Hardin & M. Y. Hussaini). ICASE/NASA LaRC Series, Springer.
Marboe, R. C. & Lauchle, G. C. 1992 Acoustic emissions from unsteady transitional boundary layer flow structures: theoretical model refinements. In Flow-Structure and Flow-Sound Interactions (ed. T. M. Farabee & M. P. Paidoussis), ASME NCA—Vol. 13, pp. 181194.
Mitchell, B. E., Lele, S. K. & Moin, P. 1995 Direct computation of the sound from a compressible co-rotating vortex pair. J. Fluid Mech. 285, 181202.Google Scholar
Möhring, W. 1978 On vortex sound at low Mach number, J. Fluid Mech. 85, 685691.Google Scholar
Pauley, L. L., Moin, P. & Reynolds, W. C. 1988 A numerical study of unsteady laminar boundary layer separation. Rep. TF-34. Dept. of Mech. Engng, Stanford University.
Phillips, O. M. 1956 On the aerodynamic surface sound from a plane turbulent boundary layer. Proc. R. Soc. Lond. A 234, 327335.Google Scholar
Piomelli, U., Cabot, W. H., Moin, P. & Lee, S. 1991 Subgrid-scale backscatter in turbulent and transitional flows. Phys. Fluids A 3, 17661771.Google Scholar
Powell A. 1960 Aerodynamic noise and the plane boundary. J. Acoust Soc. Am. 32, 982990.Google Scholar
Powell A. 1964 Theory of vortex sound. J. Acoust Soc. Am. 36, 177195.Google Scholar
Rai, M. & Moin, P. 1993 Direct numerical simulation of transition and turbulence in a spatially evolving boundary layer. J. Comput. Phys. 109, 169192.Google Scholar
Sarkar, S. & Hussaini, M. Y. 1993 Computation of the acoustic radiation from bounded homogeneous flows. In Computational Aeroacoustics (ed. J. C. Hardin & M. Y. Hussaini). ICASE/NASA LaRC Series, Springer.
Sornette, D. & Lagier, M. 1984 Acoustic noise radiated by transient flows. Acoust. Lett. 7, 104108.Google Scholar
Spalart, P. R. & Yang, K. S. 1987 Numerical study of ribbon-induced transition in Blasius flow. J. Fluid Mech. 178, 345365.Google Scholar
Wang, M. 1993 Sound radiation due to boundary layer transition. Annual Research Briefs-1993, pp. 299312. Center for Turbulence Research, Stanford Univ./NASA Ames.
Wang, M., Lele, S. K. & Moin P. 1994 Sound radiation during local laminar breakdown in a low mach number boundary layer. CTR Man. 153, Stanford Univ./NASA Ames.Google Scholar
Wang, M., Lele, S. K. & Moin P. 1996 Computation of quadrupole noise using acoustic analogy. AIAA J., submitted for publication.Google Scholar
Wray, A. & Hussaini, M. Y. 1984 Numerical experiments in boundary layer stability. Proc. R. Soc. Lond. A 392, 373389.Google Scholar
Zang, T. A. & Hussaini, M. Y. 1987 Numerical simulation of nonlinear interactions in channel and boundary layer transition. In Nonlinear Wave Interactions in Fluids (ed. R. W. Miksad, T. R. Akylas & T. Herbert). AMD Vol. 87, pp. 131145. ASME.
Zang, T. A. & Hussaini, M. Y. 1990 Multiple paths to subharmonic laminar breakdown in a boundary layer. Phys. Rev. Lett. 64, 641644.Google Scholar