Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-03T18:44:39.209Z Has data issue: false hasContentIssue false

Soret-driven thermosolutal convection induced by inclined thermal and solutal gradients in a shallow horizontal layer of a porous medium

Published online by Cambridge University Press:  10 October 2008

P. A. LAKSHMI NARAYANA
Affiliation:
Department of Mathematics, Indian Institute of Technology, Kharagpur, Kharagpur – 721 302, W. B., India
P. V. S. N. MURTHY
Affiliation:
Department of Mathematics, Indian Institute of Technology, Kharagpur, Kharagpur – 721 302, W. B., India
RAMA SUBBA REDDY GORLA*
Affiliation:
Department of Mathematics, Indian Institute of Technology, Kharagpur, Kharagpur – 721 302, W. B., India
*
Author to whom correspondence should be addressed.

Abstract

The stability of Soret-driven thermosolutal convection in a shallow horizontal layer of a porous medium subjected to inclined thermal and solutal gradients of finite magnitude is investigated theoretically by means of a linear stability analysis. The horizontal components of these gradients induce a Hadley circulation, which becomes unstable when vertical components are sufficiently large. We employed a two-term Galerkin approximation for various modes of instability. The effect of the Soret parameter on the mechanism of instability of the thermosolutal convection is investigated. Results are presented for various values of the governing parameters of the flow. It is observed that the Soret parameter has a significant effect on convective instability and this is discussed.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alex, M. S. & Patil, P. R. 2001 Effect of variable gravity field on Soret driven thermosolutal convection in a porous medium. Intl Commun. Heat Mass Transfer 28, 509518.CrossRefGoogle Scholar
Alex, S. M. & Patil, P. R. 2002 Effect of a variable gravity field on thermal instability in a porous medium with inclined temperature gradient and vertical through flow. J. Porous Media 5, 137147.CrossRefGoogle Scholar
Alex, S. M., Patil, P. R. & Venkatakrishnan, K. S. 2001 Variable gravity effects on thermal instability in a porous medium with internal heat source and inclined temperature gradient. Fluid. Dyn. Res. 29, 16.CrossRefGoogle Scholar
Bahloul, A., Boutana, N. & Vasseur, P. 2003 Double-diffusive and Soret-induced convection in a shallow horizontal porous layer. J. Fluid Mech. 491, 325352.CrossRefGoogle Scholar
Bhattacharyya, S. P. & Nadoor, S. 1976 Stability of thermal convection between non-uniformly heated plates. Appl. Sci. Res. 32, 555570.CrossRefGoogle Scholar
Caldwell, D. R. 1976 Thermosolutal convection in a solution with large negative Soret coefficient. J. Fluid Mech. 74, 129142.CrossRefGoogle Scholar
Costesèque, P., Fargue, D. & Jamet, Ph. 2002 Thermodiffusion in porous media and its consequences. In Thermal Nonequilibrium Phenomena in Fluid Mixtures. Lecture Notes in Physics, vol. 584, pp. 389–427. Springer.CrossRefGoogle Scholar
Delahaye, R., Bahloul, A. & Vasseur, P. 2002 Influence of the Soret effect on convection in a binary fluid layer with a free upper surface. Intl Commun. Heat Mass Transfer 29, 433442.CrossRefGoogle Scholar
Eckert, E. R. G. & Drake, R. M. 1972 Analysis of Heat and Mass Transfer. McGraw-Hill.Google Scholar
Hurle, D. T. J. & Jakeman, E. 1971 Soret-driven thermosolutal convection. J. Fluid Mech. 47, 667687.CrossRefGoogle Scholar
Guo, J. & Kaloni, P. N. 1995 Nonlinear stability and convection induced by inclined thermal and solutal gradients. Z. Angew. Math. Phys. 46, 645654.CrossRefGoogle Scholar
Kaloni, P. N. & Qiao, Z. 1997 Non-linear stability of convection in a porous medium with inclined temperature gradient. Intl J. Heat Mass Transfer 40, 16111615.CrossRefGoogle Scholar
Kaloni, P. N. & Qiao, Z. 2001 Nonlinear convection in a porous medium with inclined temperature gradient and variable gravity effects. Intl J. Heat Mass Transfer 44, 15851591.CrossRefGoogle Scholar
Lage, J. L. & Nield, D. A. 1998 Convection induced by inclined gradients in a shallow porous medium layer. J. Porous Media, 1, 5769.CrossRefGoogle Scholar
Manole, D. M. & Lage, J. L. 1995 Numerical simulation of supercritical Hadley circulation, within a porous layer, induced by inclined temperature gradients. Intl J. Heat Mass Transfer 38, 25832593.CrossRefGoogle Scholar
Manole, D. M., Lage, J. L. & Nield, D. A. 1994 Convection induced by inclined thermal and solutal gradients, with horizontal mass flow, in a shallow horizontal layer of a porous medium. Intl J. Heat Mass Transfer 37, 20472057.CrossRefGoogle Scholar
Manole, D. M., Lage, J. L. & Antohe, B. V. 1995 Supercritical Hadley circulation within a layer of fluid saturated porous medium: bifurcation to traveling wave. ASME HTD 309, 2329.Google Scholar
Mortimer, G. R. & Eyring, H. 1980 Elementary transition state theory of the Soret and Dufour effects. Proc. Natl Acad. Sci. USA, Chem. 77, 17281731.CrossRefGoogle ScholarPubMed
Nield, D. A. 1990 Convection in a porous medium with inclined temperature gradient and horizontal mass flow. Heat Transfer 1990, vol. 5, pp. 153–158. Hemisphere.CrossRefGoogle Scholar
Nield, D. A. 1991 Convection in a porous medium with inclined temperature gradient. Intl J. Heat Mass Transfer 34, 8792.CrossRefGoogle Scholar
Nield, D. A. 1994 Convection in a porous medium with inclined temperature gradient: additional results. Intl J. Heat Mass Transfer 37, 30213025.CrossRefGoogle Scholar
Nield, D. A. 1998 Convection in a porous medium with inclined temperature gradient and vertical through flow. Intl J. Heat Mass Transfer 41, 241243.CrossRefGoogle Scholar
Nield, D. A. & Bejan, A. 2006 Convection in Porous Media, 3rd Edn.Springer.Google Scholar
Nield, D. A., Manole, D. M. & Lage, J. L. 1993 Convection induced by inclined thermal and solutal gradients in a shallow horizontal layer of a porous medium. J. Fluid Mech. 257, 559574.CrossRefGoogle Scholar
Ouriemi, M., Vasseur, P. & Bahloul, A. 2005 Natural convection of a binary mixture confined in a slightly inclined tall enclosure. Intl Commun. Heat Mass Transfer. 32, 770778.CrossRefGoogle Scholar
Parthiban, C. & Patil, P. R. 1993 Effect of inclined temperature gradient on thermal instability in an anisotropic porous medium. Wärme-Stoffübertrag. 29, 6369.CrossRefGoogle Scholar
Parthiban, C. & Patil, P. R. 1994 Effect of inclined gradients on thermohaline convection in porous medium. Wärme-Stoffübertrag. 29, 291297.CrossRefGoogle Scholar
Parthiban, C. & Patil, P. R. 1997 Thermal instability in an anisotropic porous medium with internal heat source and inclined temperature. Intl Commun. Heat Mass Transfer 24, 10491058.CrossRefGoogle Scholar
Platten, J. K. 2006 The Soret effect: a review of recent experimental results. Trans. ASMEE: J. Appl. Mech. 73, 515.CrossRefGoogle Scholar
Platten, J. K. & Chavepeyer, G. 1973 Oscillatory motion in Bénard cell due to the Soret effect. J. Fluid Mech. 60, 305319.CrossRefGoogle Scholar
Platten, J. K., Dutrieux, J. F. & Chavepeyer, G. 2002 Soret effect and free convection: a way to measure Soret coefficients. In Thermal Nonequilibrium Phenomena in Fluid Mixtures. Lecture Notes in Physics, vol. 584, pp. 313–333. Springer.CrossRefGoogle Scholar
Platten, J. K., Bou-Ali, M. M., Costeseque, P., Kohler, W., Leppla, C., Wiegand, S. & Wittko, G. 2003 Benchmark values for the Soret effect, thermaldiffusion and diffusion coefficients of three binary organic liquid mixtures. Phil. Mag. 83, 19651971.CrossRefGoogle Scholar
Qiao, Z. & Kaloni, P. N. 1997 Convection induced by inclined temperature gradient with mass flow in a porous medium. Trans. ASME J. Heat Transfer 119, 366370.CrossRefGoogle Scholar
Qiao, Z. & Kaloni, P. N. 1998 Non-linear convection in a porous medium with inclined temperature. Intl J. Heat Mass Transfer 41, 25492552.CrossRefGoogle Scholar
Sarkar, A. & Phillips, O. M. 1992 Effects of horizontal gradients on thermohaline instabilities in a thick porous layer. Phys. Fluids A 4, 11651175.CrossRefGoogle Scholar
Thorpe, S. A., Hutt, P. K. & Soulsby, R. 1973 The effect of horizontal gradients on thermohaline convection. J. Fluid Mech. 38, 375400.CrossRefGoogle Scholar
Weber, J. E. 1973 On thermal convection between non-uniformly heated plates. Intl J. Heat Mass Transfer. 16, 961970.CrossRefGoogle Scholar
Weber, J. E. 1974 Convection in a porous medium with horizontal and vertical temperature gradients. Intl J. Heat Mass Transfer 17, 241248.CrossRefGoogle Scholar
Zimmermann, G., Muller, U. & Davis, S. H. 1992 Bénard convection in binary mixtures with Soret effects and solidification. J. Fluid Mech. 238, 657682.CrossRefGoogle Scholar